Число ПИ – математическая загадка. Чему в геометрии равно пи


Чему равно Пи (в геометрии?

Равно 3,1415926...24-летний китайский аспирант Люй Чао вошел в книгу рекордов Гиннеса, за 24 часа и 4 минуты точно назвав по памяти число "пи" с точностью до 67 890 знака после запятой.

Как сообщает агентство Синьхуа, к радости молодого человека на днях ему сообщили, что его достижение попало в последнее издание книги мировых рекордов. Молодой китаец "отнял лавры славы" у одного японца, который может безошибочно назвать число "пи" с точностью до 42 195 знака после запятой.

Люй Чао -- аспирант Северо-западного научно-технического университета сельского и лесного хозяйства. С 2004 года он начал учить наизусть число "пи". В летние каникулы 2005 года он ежедневно тратил на это занятие около 10 часов. Его труды не прошли напрасно: в конце года он установил свой рекорд.

Рассказывают, что однажды в Афинах разразилась чума, никак не желавшая покидать город. Тогда решено было обратиться за советом к оракулу на острове Делос, откуда был получен следующий ответ: "Удвойте алтарь в храме Аполлона! " Поскольку алтарь имел форму куба, афиняне немедленно соорудили другой алтарь, ребра которого были в два раза больше прежних. Однако чума не унималась. Недоуменные афиняне потребовали у жрецов объяснения. "Вы увеличили объем алтаря в восемь раз, тогда как было сказано в два раза", – ловко парировали жрецы. Так родилась знаменитая делосская задача о соизмеримости стороны и диагонали квадрата, а вместе с ней и до сих пор волнующие воображение исследователей проблемы современной теории чисел.

В то время основные геометрические построения выполнялись при помощи циркуля и линейки и сводились к нахождению точек пересечения линий и окружностей. В своих "Началах" Евклид первый доказал невозможность построения имеющимися подручными средствами диагонали квадрата по его стороне, а потому числа, выражающие эту несоизмеримость, в отличие от известных рациональных пропорций, были названы алогичными, или, как принято в современной терминологии, иррациональными. Сродни делосской задаче оказалась и проблема квадратуры круга, требующая построения при помощи циркуля и линейки квадрата, площадью равного площади заданного круга, и появилось число Пи, связывающее радиус окружности с ее длиной (или площадью круга) .

Лишь в конце 16 века было установлено, что между рациональными и иррациональными числами имеется существенная разница: рациональные числа выражаются бесконечной периодической дробью, тогда как в записи иррациональных чисел нет периодичности цифр. Попутно заметим, что под "нормальными" числами современные математики понимают такие, в десятичной записи которых вероятность появления каждой из 10 значащих цифр равна 1/10, и ни одна последовательность цифр не должна превалировать над любой другой. Правда, в те давние времена математики так глубоко не копали.

В 17 веке Декарт представил математикам новый инструмент исследования – аналитическую геометрию. Теперь было установлено, что всякое построение при помощи циркуля и линейки сводится либо к решению конечной последовательности уравнений первой и второй степени с рациональными коэффициентами, либо к решению конечного числа уравнений второй степени, где первое уравнение имеет рациональные коэффициенты, а последующие могут иметь и иррациональные, полученные из предыдущих уравнений. Числа, являющиеся корнями алгебраических уравнений определенной степени, были названы алгебраическими и составили первый класс иррациональных чисел.

Заметим, что к тому времени не было доказано, является ли число Пи рациональным или иррациональным. На первом настаивали "квадратуристы", им возражали скептики. бесплодная дискуссия продолжалась до прихода Леонарда Эйлера, который ввел для обозначения числа Пи греческую букву и связал показательную функцию мнимого переменного exp(ix) с тригонометрическими функциями cosx и sinx в известном уравнении, из которого, в частности, следует exp(iPi)=-1. Здесь на сцену вышла еще одна знаменитая математическая константа e,

otvet.mail.ru

чему равно пи в геометрии — Чему равно Пи (в геометрии? — 22 ответа



чему равно пи в геометрии

В разделе Образование на вопрос Чему равно Пи (в геометрии? заданный автором Поросятина лучший ответ это 3,16 равно

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Чему равно Пи (в геометрии?

Ответ от Корум[активный]отношение длины круга к диаметру.3,1416 ...и много-много дальше.. .взято с Кулера:Помните старый анекдот про программера, который вздремнул на клавише BackSpace? Я тут зашел на один сайтик, а пока он загружался, пошел в другое окно, потом как-то отвлекся "немножко", а когда решил проверить через часик, там загрузилось 25 метров текста в окне и еще продолжалась загрузка! Opera выдержала, но я был сильно впечатлен 🙂 Итак, сайтик не для слабонервных - представление трансцендентного числа "пи" цифрами (до бесконечности). Мне вот (из-за забывчивости) удалось получить точность до 25 млн. знаков после запятой (файлик сохранил на память). Предела у этого числа нет, поэтому можно грузить, пока винт не переполнится 🙂 Кстати, зацените и имя домена.

Ответ от Невролог[гуру]3,14 это 100процентов

Ответ от силосовать[гуру]3,14...до конца не помню

Ответ от Лорд Дред[новичек]3.14 это правильный ответ

Ответ от Еленка Загадкина[гуру]греческой буквой Пи обозначают отношение длины окружности КРУГА к его диаметру

Ответ от LANA LANA[новичек]3.14 vrode vsegda s4italos vernim 4islom)) i ono toje neto4noe))

Ответ от Пользователь удален[новичек]Число Пи в геометрии равно 3,14.А рассказывать про него особо нечего.

Ответ от Борис Цорин[гуру]3,1415926535897932384626433832795...А дальше не помню.При вычислениях обычно округляют до 3,14

Ответ от Sergey Pavlov[гуру]Равно 3,1415926...24-летний китайский аспирант Люй Чао вошел в книгу рекордов Гиннеса, за 24 часа и 4 минуты точно назвав по памяти число "пи" с точностью до 67 890 знака после запятой.Как сообщает агентство Синьхуа, к радости молодого человека на днях ему сообщили, что его достижение попало в последнее издание книги мировых рекордов. Молодой китаец "отнял лавры славы" у одного японца, который может безошибочно назвать число "пи" с точностью до 42 195 знака после запятой.Люй Чао -- аспирант Северо-западного научно-технического университета сельского и лесного хозяйства. С 2004 года он начал учить наизусть число "пи". В летние каникулы 2005 года он ежедневно тратил на это занятие около 10 часов. Его труды не прошли напрасно: в конце года он установил свой рекорд.Рассказывают, что однажды в Афинах разразилась чума, никак не желавшая покидать город. Тогда решено было обратиться за советом к оракулу на острове Делос, откуда был получен следующий ответ: "Удвойте алтарь в храме Аполлона! " Поскольку алтарь имел форму куба, афиняне немедленно соорудили другой алтарь, ребра которого были в два раза больше прежних. Однако чума не унималась. Недоуменные афиняне потребовали у жрецов объяснения. "Вы увеличили объем алтаря в восемь раз, тогда как было сказано в два раза", – ловко парировали жрецы. Так родилась знаменитая делосская задача о соизмеримости стороны и диагонали квадрата, а вместе с ней и до сих пор волнующие воображение исследователей проблемы современной теории чисел.В то время основные геометрические построения выполнялись при помощи циркуля и линейки и сводились к нахождению точек пересечения линий и окружностей. В своих "Началах" Евклид первый доказал невозможность построения имеющимися подручными средствами диагонали квадрата по его стороне, а потому числа, выражающие эту несоизмеримость, в отличие от известных рациональных пропорций, были названы алогичными, или, как принято в современной терминологии, иррациональными. Сродни делосской задаче оказалась и проблема квадратуры круга, требующая построения при помощи циркуля и линейки квадрата, площадью равного площади заданного круга, и появилось число Пи, связывающее радиус окружности с ее длиной (или площадью круга).Лишь в конце 16 века было установлено, что между рациональными и иррациональными числами имеется существенная разница: рациональные числа выражаются бесконечной периодической дробью, тогда как в записи иррациональных чисел нет периодичности цифр. Попутно заметим, что под "нормальными" числами современные математики понимают такие, в десятичной записи которых вероятность появления каждой из 10 значащих цифр равна 1/10, и ни одна последовательность цифр не должна превалировать над любой другой. Правда, в те давние времена математики так глубоко не копали.В 17 веке Декарт представил математикам новый инструмент исследования – аналитическую геометрию. Теперь было установлено, что всякое построение при помощи циркуля и линейки сводится либо к решению конечной последовательности уравнений первой и второй степени с рациональными коэффициентами, либо к решению конечного числа уравнений второй степени, где первое уравнение имеет рациональные коэффициенты, а последующие могут иметь и иррациональные, полученные из предыдущих уравнений. Числа, являющиеся корнями алгебраических уравнений определенной степени, были названы алгебраическими и составили первый класс иррациональных чисел.Заметим, что к тому времени не было доказано, является ли число Пи рациональным или иррациональным. На первом настаивали "квадратуристы", им возражали скептики. бесплодная дискуссия продолжалась до прихода Леонарда Эйлера, который ввел для обозначения числа Пи греческую букву и связал показательную функцию мнимого переменного exp(ix) с тригонометрическими функциями cosx и sinx в известном уравнении, из которого, в частности, следует exp(iPi)=-1. Здесь на сцену вышла еще одна знаменитая математическая константа e,

Ответ от Артём Мажоров[гуру]оно равно 3,14

Ответ от Yana shchigel[гуру]3.14 и еще 6 знаков после 14

Ответ от ALEX LEE[гуру]Число у когторого после запятой нету конца. Сейчас целый суперкомпьютер считает эти цифры после запятой... там 3,1441...и понеслось... ну а как его получить - нужно разделить длину окружность на двойной радиус ее образующей... вот и все

Ответ от Владимир[новичек]3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199 и т. д.

Ответ от H h[новичек]3.1415926535Большая советская энциклопедияПи,p, буква греческого алфавита, применяемая в математике для обозначения определённого иррационального числа, именно - отношения длины окружности к диаметру. Это обозначение (вероятно, от греч. perijereia окружность, периферия) стало общепринятым после работы Л. Эйлера, относящейся к 1736, однако впервые оно было употреблено английским математиком У. Джонсом (1706). Как и всякое иррациональное число, p представляется бесконечной непериодической десятичной дробью: p = 3,141592653589793238462643...Нужды практических расчётов, относящихся к окружности и круглым телам, заставили уже в глубокой древности искать для p приближений с помощью рациональных чисел. Древнеегипетские вычисления (2-е тысячелетие до нашей эры) площади круга соответствуют приближённому значению p "3 или, более точному, p " (16/9)2 = 3,16049... Архимед (3 в. до н. э.) , сравнивая окружность с правильными вписанными и описанными многоугольниками, нашёл, что p заключается между= 3,14084... и = 3,14285

Пи число на ВикипедииПосмотрите статью на википедии про Пи число

22oa.ru

Число ПИ – математическая загадка

Загадочное число ПИ – математическая константа, являющаяся соотношением длины окружности и ее диаметра. На протяжении многих веков оно занимает умы математиков всего мира. Его считают даже мистическим, не поддающимся рациональному объяснению. Это особенно удивительно потому, что математика – самая точная из всех наук. Но она имеет лишь предположения насчет закономерностей в хаотической последовательности математической константы ПИ.

В 1794 году ученые доказали, что ПИ – бесконечное иррациональное число. Общепризнанным обозначением его является греческая буква "π". Загадка ПИ выходит далеко за пределы чистой математики, это число можно найти в формулах и явлениях, присущих другим наукам – астрономии, физике, теории относительности, генетике, статистике. Вездесущее число ПИ с его завораживающей последовательностью цифр, уходящей в бесконечность, для людей, неравнодушных к математике, является чем-то вроде произведения искусства.

Любители точных наук многих стран мира даже празднуют День ПИ. Конечно, этот праздник не является официальным. Его в 1987 придумал американский физик Ларри Шоу. Дата, выбранная для празднования, не случайна, она как бы зашифрована в самой константе. Зная, чему равно число ПИ, можно отгадать и дату праздника в его честь.

Из школьной программы нам известно как минимум 7 знаков после запятой, которые были заучены как стишок – «3-14-15-92 и 6». Третий месяц, 14 число… Вот и получается, что 14 марта точно в 1.59.26 вступает в права число ПИ. Празднующие любители математики произносят речи в честь константы, едят пирог с изображенной на нем греческой буквой "π" или первыми цифрами этого числа, играют в различные игры, решают головоломки – одним словом, развлекаются подобающим для математиков образом. Забавное совпадение – 14 марта появился на свет великий Альберт Энштейн, создатель теории относительности.

Фанаты числа ПИ соревнуются в попытках выучить как можно большее количество цифр константы. Рекорд пока принадлежит колумбийскому жителю Хайме Гарсия. Три дня потребовалось колумбийцу на озвучивание 150 тысяч знаков. Рекорд человека-компьютера подтвержден профессорами математики и занесен в книгу Гиннеса.

Число ПИ полностью воспроизвести невозможно, оно бесконечно. В нем нет ни единой циклической последовательности, и, по мнению математиков, таковая никогда не обнаружится, сколько бы не вычислили еще знаков.

Американский математик Дэвид Бэйли со своими канадскими коллегами создал специальную компьютерную программу, вычисления по которой показали, что последовательность цифр числа ПИ действительно случайна, словно иллюстрирующая теорию хаоса.

На протяжении многовековой истории числа ПИ ведется своеобразная погоня за количеством его цифр. Последние данные удалось вывести японским ученым из университета Цукуба – точность их вычислений составляет больше 2,5 триллионов десятичных знаков. Расчеты производились на суперкомпьютере, оборудованном 640 четырехъядерными процессорами, а заняли 73 с половиной часа.

В заключение хочется привести отрывок из детского стихотворения Сергея Боброва. Как вы думаете, что здесь зашифровано?

«22 совы скучали на больших сухих суках.

22 совы мечтали

о семи больших мышах»

(При делении 22 на 7 получается… число ПИ).

fb.ru

Чему равно Пи в геометрии? 3.14 и еще 6 знаков… |

Чему равно Пи в геометрии?

  • 3.14 и еще 6 знаков после 14
  • 3,14 это 100процентов
  • оно равно 3,14
  • Равно 3,1415926…24-летний китайский аспирант Люй Чао вошел в книгу рекордов Гиннеса, за 24 часа и 4 минуты точно назвав по памяти число «пи» с точностью до 67 890 знака после запятой.Как сообщает агентство Синьхуа, к радости молодого человека на днях ему сообщили, что его достижение попало в последнее издание книги мировых рекордов. Молодой китаец «отнял лавры славы» у одного японца, который может безошибочно назвать число «пи» с точностью до 42 195 знака после запятой.Люй Чао — аспирант Северо-западного научно-технического университета сельского и лесного хозяйства. С 2004 года он начал учить наизусть число «пи». В летние каникулы 2005 года он ежедневно тратил на это занятие около 10 часов. Его труды не прошли напрасно: в конце года он установил свой рекорд. Рассказывают, что однажды в Афинах разразилась чума, никак не желавшая покидать город. Тогда решено было обратиться за советом к оракулу на острове Делос, откуда был получен следующий ответ: «Удвойте алтарь в храме Аполлона! » Поскольку алтарь имел форму куба, афиняне немедленно соорудили другой алтарь, ребра которого были в два раза больше прежних. Однако чума не унималась. Недоуменные афиняне потребовали у жрецов объяснения. «Вы увеличили объем алтаря в восемь раз, тогда как было сказано в два раза», – ловко парировали жрецы. Так родилась знаменитая делосская задача о соизмеримости стороны и диагонали квадрата, а вместе с ней и до сих пор волнующие воображение исследователей проблемы современной теории чисел. В то время основные геометрические построения выполнялись при помощи циркуля и линейки и сводились к нахождению точек пересечения линий и окружностей. В своих «Началах» Евклид первый доказал невозможность построения имеющимися подручными средствами диагонали квадрата по его стороне, а потому числа, выражающие эту несоизмеримость, в отличие от известных рациональных пропорций, были названы алогичными, или, как принято в современной терминологии, иррациональными. Сродни делосской задаче оказалась и проблема квадратуры круга, требующая построения при помощи циркуля и линейки квадрата, площадью равного площади заданного круга, и появилось число Пи, связывающее радиус окружности с ее длиной (или площадью круга) . Лишь в конце 16 века было установлено, что между рациональными и иррациональными числами имеется существенная разница: рациональные числа выражаются бесконечной периодической дробью, тогда как в записи иррациональных чисел нет периодичности цифр. Попутно заметим, что под «нормальными» числами современные математики понимают такие, в десятичной записи которых вероятность появления каждой из 10 значащих цифр равна 1/10, и ни одна последовательность цифр не должна превалировать над любой другой. Правда, в те давние времена математики так глубоко не копали. В 17 веке Декарт представил математикам новый инструмент исследования – аналитическую геометрию. Теперь было установлено, что всякое построение при помощи циркуля и линейки сводится либо к решению конечной последовательности уравнений первой и второй степени с рациональными коэффициентами, либо к решению конечного числа уравнений второй степени, где первое уравнение имеет рациональные коэффициенты, а последующие могут иметь и иррациональные, полученные из предыдущих уравнений. Числа, являющиеся корнями алгебраических уравнений определенной степени, были названы алгебраическими и составили первый класс иррациональных чисел. Заметим, что к тому времени не было доказано, является ли число Пи рациональным или иррациональным. На первом настаивали «квадратуристы», им возражали скептики. бесплодная дискуссия продолжалась до прихода Леонарда Эйлера, который ввел для обозначения числа Пи греческую букву и связал показательную функцию мнимого переменного exp(ix) с тригонометрическими функциями cosx и sinx в известном уравнении, из которого, в частности, следует exp(iPi)=-1. Здесь на сцену вышла еще одна знаменитая математическая константа e,
  • 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199 и т. д.
  • отношение длины круга к диаметру.3,1416 …и много-много дальше.. .взято с Кулера: Помните старый анекдот про программера, который вздремнул на клавише BackSpace? Я тут зашел на один сайтик, а пока он загружался, пошел в другое окно, потом как-то отвлекся «немножко», а когда решил проверить через часик, там загрузилось 25 метров текста в окне и еще продолжалась загрузка! Opera выдержала, но я был сильно впечатлен :) Итак, сайтик не для слабонервных — представление трансцендентного числа «пи» цифрами (до бесконечности) . Мне вот (из-за забывчивости) удалось получить точность до 25 млн. знаков после запятой (файлик сохранил на память) . Предела у этого числа нет, поэтому можно грузить, пока винт не переполнится :) Кстати, зацените и имя домена. [ссылка появится после проверки модератором]
  • 3.14 vrode vsegda s4italos vernim 4islom)) i ono toje neto4noe))
  • Число Пи в геометрии равно 3,14.А рассказывать про него особо нечего.
  • 3,16 равно
  • Число у когторого после запятой нету конца. Сейчас целый суперкомпьютер считает эти цифры после запятой…. там 3,1441….и понеслось… ну а как его получить — нужно разделить длину окружность на двойной радиус ее образующей… вот и все
  • 3.1415926535Большая советская энциклопедияПи,p, буква греческого алфавита, применяемая в математике для обозначения определённого иррационального числа, именно — отношения длины окружности к диаметру. Это обозначение (вероятно, от греч. perijereia окружность, периферия) стало общепринятым после работы Л. Эйлера, относящейся к 1736, однако впервые оно было употреблено английским математиком У. Джонсом (1706). Как и всякое иррациональное число, p представляется бесконечной непериодической десятичной дробью: p = 3,141592653589793238462643…Нужды практических расчётов, относящихся к окружности и круглым телам, заставили уже в глубокой древности искать для p приближений с помощью рациональных чисел. Древнеегипетские вычисления (2-е тысячелетие до нашей эры) площади круга соответствуют приближённому значению p «3 или, более точному, p » (16/9)2 = 3,16049… Архимед (3 в. до н. э.) , сравнивая окружность с правильными вписанными и описанными многоугольниками, нашёл, что p заключается между = 3,14084… и = 3,14285
  • 3.14 это правильный ответ
  • 3,14….до конца не помню
  • греческой буквой Пи обозначают отношение длины окружности КРУГА к его диаметру
  • 3,1415926535897932384626433832795…А дальше не помню.При вычислениях обычно округляют до 3,14
Внимание, только СЕГОДНЯ!

goxi.ru

Пи (число)

пи число пи, пи число фибоначчи(перечислено в порядке увеличения точности)

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π У этого термина существуют и другие значения, см. Пи. Если принять диаметр окружности за единицу, то длина окружности — это число «пи» Пи в перспективе

(произносится «пи») — математическая константа, равная отношению длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Содержание

  • 1 Свойства
  • 2 История
    • 2.1 Геометрический период
    • 2.2 Классический период
    • 2.3 Эра компьютерных вычислений
  • 3 Рациональные приближения
  • 4 Нерешённые проблемы
  • 5 Метод иглы Бюффона
  • 6 Мнемонические правила
  • 7 Дополнительные факты
  • 8 В культуре
  • 9 См. также
  • 10 Примечания
  • 11 Литература
  • 12 Ссылки

Свойства

Трансцендентность и иррациональность

  •  — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и .
  •  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году.
    • Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа , то доказательство трансцендентности положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.
  • В 1934 году Гельфонд доказал трансцендентность числа . В 1996 году Юрий Нестеренко доказал, что для любого натурального числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и .
  • является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов.

Соотношения

Известно много формул числа :

  • Формула Валлиса:
здесь простые числа
  • Тождество Эйлера:
  • Другие связи между константами:
  • Т. н. «интеграл Пуассона» или «интеграл Гаусса»
  • Интегральный синус:
  • Выражение через дилогарифм:
  • Через несобственный интеграл

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e:

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

См. также: История математических обозначений

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году (десяти знаков числа вполне достаточно для всех практических целей). Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков. Алгоритм состоит из установки начальных значений

и итераций:

,

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein). При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа, открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих. С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул. Пусть q = eπ, тогда

и другие вида

,

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p, у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубы рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой.

Рациональные приближения

  •  — Архимед (III век до н. э.) — древнегреческий математик, физик и инженер;
  •  — Ариабхата (V веке н. э.) — индийский астроном и математик;
  •  — Цзу Чунчжи (V веке н. э.) — китайский астроном и математик.

Сравнение точности приближений:

Непрерывная дробь

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Тригонометрия радиан = 180°
Число Округленное значение Точность (совпадения разрядов)
3,14159265…
3,14285714… 2 разряда после запятой
3,14166667… 3 разряда после запятой
3,14159292… 6 разрядов после запятой

Нерешённые проблемы

  • Неизвестно, являются ли числа и алгебраически независимыми.
  • Неизвестна точная мера иррациональности для чисел и (но известно, что для она не превышает 7,6063).
  • Неизвестна мера иррациональности ни для одного из следующих чисел: Ни для одного из них неизвестно даже, является ли оно рациональным числом, алгебраическим иррациональным или трансцендентным числом.
  • Неизвестно, является ли целым числом при каком-либо положительном целом (см. тетрация).
  • Неизвестно, принадлежит ли к кольцу периодов.
  • До сих пор ничего неизвестно о нормальности числа ; неизвестно даже, какие из цифр 0—9 встречаются в десятичном представлении числа бесконечное количество раз.

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности. Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.

Мнемонические правила

Стихотворения для запоминания 8-11 знаков числа π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Подобные стихи существовали и в дореформенной орфографии. В следующем стихотворении, чтобы узнать соответствующую цифру числа π, надо считать и букву «еръ»:

Кто и шутя и скоро пожелаетъПи узнать, число ужъ знаетъ.

Стихи, облегчающие запоминание числа π, есть и в других языках. Например, это стихотворение на французском языке позволяет запомнить 126 первых цифр числа π.

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле
  • Древние египтяне и Архимед принимали величину от 3 до 3,160, арабские математики считали число .
  • Мировой рекорд по запоминанию знаков числа после запятой принадлежит китайцу Лю Чао, который в 2006 году в течение 24 часов и 4 минут воспроизвёл 67 890 знаков после запятой без ошибки. В том же 2006 году японец Акира Харагути заявил, что запомнил число до 100-тысячного знака после запятой, однако проверить это официально не удалось.
  • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора университета Пердью, присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
  • «Число Пи для гренландских китов равно трем» написано в «Справочнике китобоя» 1960-х годов выпуска.
  • По состоянию на 2010 год вычислено 5 триллионов знаков после запятой.
  • По состоянию на 2011 год вычислено 10 триллионов знаков после запятой.
  • По состоянию на 2014 год вычислено 13,3 триллионов знаков после запятой.

В культуре

  • Существует художественный фильм, названный в честь числа Пи.
  • Неофициальный праздник «День числа пи» ежегодно отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа . Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта ровно в 01:59 дата и время совпадают с первыми разрядами числа Пи = 3,14159.
  • Ещё одной датой, связанной с числом , является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа .

См. также

  • Квадратура круга
  • Рациональная тригонометрия
  • Точка Фейнмана

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ В наши дни с помощью ЭВМ число вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность в общем-то никому не нужна.Точность вычисления ограничивается обычно наличными ресурсами компьютера, — чаще всего временем, несколько реже — объёмом памяти.
  10. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  11. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713. (англ.)
  12. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — Т. 66, вып. 218. — С. 903—913. (англ.)
  13. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi (англ.). Проверено 11 января 2010. Архивировано из первоисточника 22 августа 2011.
  14. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2) (англ.). Проверено 11 января 2010. Архивировано из первоисточника 22 августа 2011.
  15. ↑ Установлен новый рекорд точности вычисления числа π
  16. ↑ Pi Computation Record
  17. ↑ Число «Пи» рассчитано с рекордной точностью
  18. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  19. ↑ Определено 10 триллионов цифр десятичного разложения для π
  20. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  21. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  22. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  23. ↑ en:Irrational number#Open questions
  24. ↑ Some unsolved problems in number theory
  25. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  26. ↑ An introduction to irrationality and transcendence methods
  27. ↑ Обман или заблуждение? Квант № 5 1983 год
  28. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  29. ↑ Лудольфово число. Пи. Pi.
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.
  36. ↑ Alexander J. Yee. y-cruncher - A Multi-Threaded Pi-Program. y-cruncher.
  37. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (недоступная ссылка с 22-05-2013 (859 дней) — история, копия) (англ.).

Литература

  • Жуков А. В. О числе π. — М.: МЦМНО, 2002. — 32 с. — ISBN 5-94057-030-5.
  • Жуков А. В. Вездесущее число «пи». — 2-е изд. — М.: Издательство ЛКИ, 2007. — 216 с. — ISBN 978-5-382-00174-6.
  • Перельман Я. И. Квадратура круга. — Л.: Дом занимательной науки, 1941.

Ссылки

  • Weisstein, Eric W. Pi Formulas (англ.) на сайте Wolfram MathWorld.
  • Различные представления числа Пи на Wolfram Alpha
  • последовательность A000796 в OEIS
  Числа с собственными именами Степени тысячи Древнерусские числа Прочие степени десяти Степени двенадцати Прочие натуральные Прочие числа
Тысяча • Миллион • Миллиард • Биллион • Триллион • Квадриллион • … • Центиллион
Тьма  • Легион (неведий)  • Леодр  • Вран (ворон)  • Колода
Мириада • Гугол • Асанкхейя • Гуголплекс
Дюжина • Гросс • Масса
Чёртова дюжина • Число зверя • Число Рамануджана — Харди • Число Грэма • Число Скьюза • Число Мозера
Пи • Золотое сечение • Серебряное сечение • e (число Эйлера) • Постоянная Эйлера — Маскерони • Постоянные Фейгенбаума • Постоянная Гельфонда • Константа Бруна • Постоянная Каталана • Постоянная Апери • Мнимая единица

пи число зверя, пи число маха, пи число пи, пи число фибоначчи

Пи (число) Информацию О

Пи (число) Комментарии

Пи (число)Пи (число) Пи (число) Вы просматриваете субъект

Пи (число) что, Пи (число) кто, Пи (число) описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Пи (число) - это... Что такое Пи (число)?

Иррациональные числаγ - ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
Система счисления Оценка числа
Двоичная 11,00100100001111110110…
Десятичная 3,1415926535897932384626433832795…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 22⁄7, 223⁄71, 355⁄113,103993/33102, …

(перечислено в порядке увеличения точности)

Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Евклидова геометрия радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

(произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Свойства

Трансцендентность и иррациональность

  •  — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году[3] году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и .
  •  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Транcцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году.[4]
  • В 1934 году Гельфонд доказал трансцендентность числа .[5] В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и .[6][7]
  • является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов.

Соотношения

Известно много формул числа :

  • Кратные ряды :
здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e :

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

и итераций:

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

и другие вида

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

Рациональные приближения

  •  — Архимед,
  •  — дана в книге индийского мыслителя и астронома Ариабхаты в V веке н. э.,
  •  — приписывается современнику Ариабхаты китайскому астроному Цзу Чунчжи.

Нерешённые проблемы

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

Стихотворение для затвердевания в памяти 8-11 знаков числ π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле
  • Древние египтяне и Архимед принимали величину от 3 до 3,160, арабские математики считали число .[28]
  • Неофициальный праздник «День числа пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа . Считается[29], что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта ровно в 01:59 дата и время совпадают с первыми разрядами числа Пи = 3,14159.
  • Ещё одной датой, связанной с числом , является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа .
  • Мировой рекорд по запоминанию знаков числа после запятой принадлежит китайцу Лю Чао, который в 2006 году в течение 24 часов и 4 минут воспроизвёл 67 890 знаков после запятой без ошибки.[30][31] В том же 2006 году японец Акира Харагути заявил, что запомнил число до 100-тысячного знака после запятой,[32] однако проверить это официально не удалось.[33]
  • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[34] Данный билль не стал законом благодаря своевременному вмешательству профессора университета Пердью, присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
  • «Число Пи для гренландских китов равно трем» написано в «Справочнике китобоя» 1960-х годов выпуска.[35]
  • По состоянию на 2010 год вычислено 5 триллионов знаков после запятой[17].
  • По состоянию на 2011 год вычислено 10 триллионов знаков после запятой[19].

В культуре

См. также

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  10. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
  11. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
  12. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  13. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  14. ↑ Установлен новый рекорд точности вычисления числа π
  15. ↑ Pi Computation Record
  16. ↑ Число «Пи» рассчитано с рекордной точностью
  17. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  18. ↑ Определено 10 триллионов цифр десятичного разложения для π
  19. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  20. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  21. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  22. ↑ en:Irrational number#Open questions
  23. ↑ Some unsolved problems in number theory
  24. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  25. ↑ An introduction to irrationality and transcendence methods
  26. ↑ Обман или заблуждение? Квант № 5 1983 год
  27. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  28. ↑ Лудольфово число. Пи. Pi.
  29. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

Литература

Ссылки

dal.academic.ru

Пи — Википедия

Материал из Википедии — свободной энциклопедии

Перейти к навигации Перейти к поиску

Пи:

  • Пи (буква) (Π, π) — буква греческого алфавита.
  • Пи (число) (π{\displaystyle \pi }) — математическая константа (3,1415…), выражающая отношение длины окружности к длине её диаметра.
  • π(x){\displaystyle \pi (x)} — π-функция, показывающая количество простых чисел, не превосходящих x{\displaystyle x}.
  • Π(x)=Γ(x+1){\displaystyle \Pi (x)=\Gamma (x+1)} — Π-функция, альтернативное обозначения для Г-функции, обобщение факториала.
  • π-мезон, пион — три вида субатомных частиц из группы мезонов (π0{\displaystyle \pi ^{0}}, π+{\displaystyle \pi ^{+}} и π−{\displaystyle \pi ^{-}}), имеющих наименьшую массу среди мезонов.
  • Пи-теорема (π-теорема) — основополагающая теорема анализа размерностей.
  • Пи (фильм) («π», англ. Pi) — художественный фильм, психологический триллер, США, 1998 год. Режиссёр — Даррен Аронофски.
  • Пи Скорпиона (π Sco) — тройная звезда в созвездии Скорпиона.
  • Пи Столовой Горы (π Столов

ru.wikipedia.org