Молекулярная физика. Что изучает молекулярная физика


Молекулярная физика - это... Что такое Молекулярная физика?

Молекулярная физика — раздел физики, который изучает физические свойства тел на основе рассмотрения их молекулярного строения. Задачи молекулярной физики решаются методами физической статистики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела.

История

Первым сформировавшимся разделом молекулярной физики была кинетическая теория газов. В процессе её развития работами Джеймса Клерка Максвелла, Людвига Больцмана , Дж. У. Гиббса была создана классическая статистическая физика.

Количественные представления о взаимодействии молекул (молекулярных силах) начали развиваться в теории капиллярных явлений. Классические работы в этой области А. К. Клеро (А. С. Glairaut, 1743), Пьера-Симона Лапласа (1806), Томаса Юнга (1805), С. Д. Пуассона , Карла Фридриха Гаусса (1830—1831) и других положили начало теории поверхностных явлений. Межмолекулярные взаимодействия были учтены Й. Д. Ван-дер-Ваальсом (1873) при объяснении физических свойств реальных газов и жидкостей.

В начале XX века молекулярная физика вступила в новый этап развития. В работах Жана Батиста Перрена и Теодора Сведберга (1906), Михаила Смолуховского и Альберта Эйнштейна (1904—06), посвященных броуновскому движению микрочастиц, были получены доказательства реальности существования молекул.

Методами рентгеновского структурного анализа (а впоследствии методами электронографии и нейтронографии) были изучены структура твёрдых тел и жидкостей и её изменения при фазовых переходах и изменении температуры, давления и других характеристик. Учение о межатомных взаимодействиях на основе представлений квантовой механики получило развитие в работах Макса Борна, Фрица Лондона и Вальера Гайтлера, а также Петера Дебая. Теория переходов из одного агрегатного состояния в другое, намеченная Ван-дер-Ваальсом и Уильямом Томсоном и развитая в работах Гиббса (конец XIX века), Льва Давидовича Ландау и Макса Фольмера (1930-е) и их последователей, превратилась в современную теорию образования фазы — важный самостоятельный раздел физики. Объединение статистических методов с современными представлениями о структуре вещества в работах Якова Ильича Френкеля, Генри Эйринга (1935—1936), Джона Десмонда Бернала и других привело к молекулярной физике жидких и твёрдых тел.

Задачи науки

Круг вопросов, охватываемых молекулярной физикой, очень широк. В ней рассматриваются: строение вещества и его изменение под влиянием внешних факторов (давления, температуры, электромагнитного поля), явления переноса (диффузия, теплопроводность, вязкость), фазовое равновесие и процессы фазовых переходов (кристаллизация, плавление, испарение, конденсация), критическое состояние вещества, поверхностные явления на границах раздела фаз.

Развитие молекулярной физики привело к выделению из неё самостоятельных, разделов: статистической физики, физической кинетики, физики твёрдого тела, физической химии, молекулярной биологии. На основе общих теоретических представлений молекулярной физики получили развитие физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химия дисперсных систем и поверхностных явлений, теория массопереноса и теплопереноса, физико-химическая механика. При всём различии объектов и методов исследования здесь сохраняется, однако, главная идея: молекулярная физика — описание макроскопических свойств вещества на основе микроскопической (молекулярной) картины его строения.

Литература

  • Радченко И.В. Молекулярная физика. – М.: Наука, 1965 -480c.
  • Гиршфельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: ИЛ, 1961. — 931с.
  • Дерягин Б. В., Чураев Н. В., Муллер В. М. Поверхностные силы. М.: Наука, 1985.
  • Кикоин А. К., Кикоин И. К. Молекулярная физика. 2-е изд. М.: Наука, 1976.
  • Матвеев А. Н. Молекулярная физика. М.: Высшая школа, 1981. — 400 с.
  • Оно С. Кондо С. Молекулярная теория поверхностного натяжения в жидкостях. Пер. с англ. М.: ИИЛ, 1963. — 292с.
  • Резибуа П., Де Ленер М. Классическая кинетическая теория жидкостей и газов. Пер. с англ. М.: Мир, 1980.
  • Телеснин Р. В. Молекулярная физика. 2-е изд. М.: Высшая школа, 1973.
  • Фишер И. З. Статистическая теория жидкостей. Наука, 1961. — 280с.
  • Френкель Я. И. Кинетическая теория жидкостей. М.: Наука, 1975. — 592с.

См.также

dic.academic.ru

молекулярная физика - это... Что такое молекулярная физика?

раздел физики, изучающий физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения. Из молекулярной физики выделились в самостоятельные разделы физика твёрдого тела, физическая кинетика, физическая химия и т. д.

МОЛЕКУЛЯ́РНАЯ ФИ́ЗИКА, раздел физики (см. ФИЗИКА), изучающий физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения. В зависимости от молекулярного строения тел, сил межмолекулярного взаимодействия и характера теплового движения частиц, молекулярная физика изучает особенности процессов фазового равновесия и фазовых переходов веществ — кристаллизацию и плавление, испарение и конденсацию и др., явления переноса — диффузию, теплопроводность, внутреннее трение, а также поверхностные явления на границах раздела различных фаз. Разделами молекулярной физики являются физика газообразного состояния вещества, физика конденсированного состояния вещества (жидкости и твердые тела), физические явления в поверхностных слоях различных соприкасающихся фаз и др. Из молекулярной физики выделились в самостоятельные разделы физика твердого тела (см. ФИЗИКА ТВЕРДОГО ТЕЛА), физическая химия (см. ФИЗИЧЕСКАЯ ХИМИЯ), молекулярная биология (см. МОЛЕКУЛЯРНАЯ БИОЛОГИЯ) и т. д. Задачи молекулярной физики решаются методами статистической физики (см. СТАТИСТИЧЕСКАЯ ФИЗИКА), термодинамики (см. ТЕРМОДИНАМИКА) и физической кинетики (см. КИНЕТИКА ФИЗИЧЕСКАЯ). Они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела. Первым сформировавшимся разделом молекулярной физики была кинетическая теория газов (см. КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ). В процессе ее развития была создана классическая статистическая физика, которая наряду с термодинамическим методом легла в основу методов теоретического исследования в молекулярной физике. Статистический метод, используемый и развитый в молекулярной физике, состоит в изучении совокупностей большого числа частиц, участвующих в тепловом движении и образующих физические тела, находящиеся в различных агрегатных состояниях. Законы поведения совокупностей большого числа частиц, исследуемых статистическими методами, называются статистическими закономерностями. Математическим аппаратом метода является теория случайных величин и процессов. То есть статистический метод является методом исследования систем, состоящих из большого количества частиц, и использующий статистические закономерности и средние значения физических величин, характеризующих всю совокупность частиц. Статистический подход является по сути молекулярно-кинетической теорией, основанной на определенных представлениях о строении вещества. Задачей статистической механики является установление законов поведения макроскопических систем, состоящих из большого числа частиц, на основе известных динамических законов поведения отдельных частиц. При этом статистическая механика дает возможность установить связь между макроскопическими параметрами большой системы и средними значениями микроскопических величин, характеризующих отдельные молекулы. Так как макроскопические параметры системы зависят от движения молекул, задачей статистической физики заключается в том, чтобы выразить свойства системы в целом через характеристики отдельных молекул. Термодинамический метод исследования систем, состоящих из большого числа частиц, отличается от статистического тем, что оперирует величинами, характеризующими систему в целом, такими как, например, температура и давление. Термодинамические методы не рассматривают процессы, происходящие на микроуровне. Термодинамический метод исследования систем, состоящих из большого числа структурных элементов, строится на основе применения к системам нескольких принципов, гипотез, аксиом, которые либо являются обобщением опыта, либо их применение не противоречит ему. Термодинамика представляет собой феноменологическую теорию, основанную на небольшом числе установленных законов, таких, как, например, закон сохранения энергии. В методе не рассматривают микроструктуру систем и механизм совершающихся в них микропроцессов. Основные понятия термодинамики вводятся на основе физического эксперимента, при этом связь между различными макроскопическими параметрами устанавливается опытным путем. Поэтому результаты и методы термодинамики могут быть применимы для любых систем без конкретизации деталей их устройств. Термодинамический подход дает возможность решать конкретные задачи, не имея сведений о свойствах атомов или молекул. На основе общих теоретических представлений молекулярной физики получили развитие такие специальные области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика (см. КРИСТАЛЛОФИЗИКА), физико-химическую механика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. При всём различии объектов и методов исследования сохраняется основная идея молекулярной физики — описание макроскопических свойств вещества, исходя из особенностей микроскопической (молекулярной) картины его строения.

dic.academic.ru

Вопросы по физике

1.Что изучает молекулярная физика? Что такое МКТ? 1)Молекулярная физика – раздел физики, изучающий физические свойства веществ в различных агрегатных состояниях на основе рассмотрения их молекулярного (микроскопического) строения. Задачи молекулярной физики решаются методами статистической механики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела. 2) Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ. МКТ объясняет строение и св-ва макроскопических тел, как результат взаимодействия большого числа атомов, молекул или ионов, из которых они состоят.

2.Сформулируйте основные положения МКТ вещества? В основе молекулярно-кинетической теории лежат три основных положения:

1)Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов; Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2)Атомы и молекулы находятся в непрерывном хаотическом движении.

3)Частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

3.Какие опыты подтверждают основные положения МКТ? 4.Что такое броуновское движение? Причина? Броуновское движение — беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. 

5.Что такое диффузия? Примеры использования? Диффузия — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией. Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения.

6.Что такое моль вещества? Моль — единица измерения количества вещества в Международной системе единиц (СИ), одна из семи основных единиц СИ. Моль принят в качестве основной единицы СИ XIV Генеральной конференцией по мерам и весам в 1971 году.

Моль вещества - это такое его количество, которое в граммах весит столько же, сколько весит молекула вещества в относительных атомных единицах, которое содержит 6,02*10^23 структурных единиц.

studfiles.net

Молекулярная физика — Мегаэнциклопедия Кирилла и Мефодия — статья

Молекуля́рная фи́зика, раздел физики, изучающий физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения. В зависимости от молекулярного строения тел, сил межмолекулярного взаимодействия и характера теплового движения частиц, молекулярная физика изучает особенности процессов фазового равновесия и фазовых переходов веществ — кристаллизацию и плавление, испарение и конденсацию и др., явления переноса — диффузию, теплопроводность, внутреннее трение, а также поверхностные явления на границах раздела различных фаз. Разделами молекулярной физики являются физика газообразного состояния вещества, физика конденсированного состояния вещества (жидкости и твердые тела), физические явления в поверхностных слоях различных соприкасающихся фаз и др. Из молекулярной физики выделились в самостоятельные разделы физика твердого тела, физическая химия, молекулярная биология и т. д.Первым сформировавшимся разделом молекулярной физики была кинетическая теория газов. В процессе ее развития была создана классическая статистическая физика, которая наряду с термодинамическим методом легла в основу методов теоретического исследования в молекулярной физике.

Статистический метод, используемый и развитый в молекулярной физике, состоит в изучении совокупностей большого числа частиц, участвующих в тепловом движении и образующих физические тела, находящиеся в различных агрегатных состояниях. Законы поведения совокупностей большого числа частиц, исследуемых статистическими методами, называются статистическими закономерностями. Математическим аппаратом метода является теория случайных величин и процессов. То есть статистический метод является методом исследования систем, состоящих из большого количества частиц, и использующий статистические закономерности и средние значения физических величин, характеризующих всю совокупность частиц.

Статистический подход является по сути молекулярно-кинетической теорией, основанной на определенных представлениях о строении вещества. Задачей статистической механики является установление законов поведения макроскопических систем, состоящих из большого числа частиц, на основе известных динамических законов поведения отдельных частиц. При этом статистическая механика дает возможность установить связь между макроскопическими параметрами большой системы и средними значениями микроскопических величин, характеризующих отдельные молекулы. Так как макроскопические параметры системы зависят от движения молекул, задачей статистической физики заключается в том, чтобы выразить свойства системы в целом через характеристики отдельных молекул.

Термодинамический метод исследования систем, состоящих из большого числа частиц, отличается от статистического тем, что оперирует величинами, характеризующими систему в целом, такими как, например, температура и давление. Термодинамические методы не рассматривают процессы, происходящие на микроуровне.

Термодинамический метод исследования систем, состоящих из большого числа структурных элементов, строится на основе применения к системам нескольких принципов, гипотез, аксиом, которые либо являются обобщением опыта, либо их применение не противоречит ему. Термодинамика представляет собой феноменологическую теорию, основанную на небольшом числе установленных законов, таких, как, например, закон сохранения энергии. В методе не рассматривают микроструктуру систем и механизм совершающихся в них микропроцессов. Основные понятия термодинамики вводятся на основе физического эксперимента, при этом связь между различными макроскопическими параметрами устанавливается опытным путем. Поэтому результаты и методы термодинамики могут быть применимы для любых систем без конкретизации деталей их устройств. Термодинамический подход дает возможность решать конкретные задачи, не имея сведений о свойствах атомов или молекул.

На основе общих теоретических представлений молекулярной физики получили развитие такие специальные области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химическую механика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. При всём различии объектов и методов исследования сохраняется основная идея молекулярной физики - описание макроскопических свойств вещества, исходя из особенностей микроскопической (молекулярной) картины его строения.

megabook.ru

Молекулярная физика - это... Что такое Молекулярная физика?

        раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения. Задачи М. ф. решаются методами физической статистики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела. Атомистические представления о строении вещества, высказанные ещё философами древности (см. Атомизм), в начале 19 в. были с успехом применены в химии (Дж. Дальтон, 1801), что в значительной мере содействовало развитию М. ф. Первым сформировавшимся разделом М. ф. была Кинетическая теория газов. В результате работ Дж. Максвелла (1858—60), Л. Больцмана (1868) и Дж. Гиббса (1871—1902), развивавших молекулярно-кинетическую теорию газов, была создана классическая Статистическая физика.          Количественные представления о взаимодействии молекул (молекулярных силах) начали развиваться в теории капиллярных явлений (См. Капиллярные явления). Классические работы в этой области А. Клеро (1743), П. Лапласа (1806), Т. Юнга (1805), С. Пуассона, К. Гаусса (1830—31), Дж. Гиббса (1874—1878), И. С. Громеки (1879, 1886) и др. положили начало теории поверхностных явлений (См. Поверхностные явления). Межмолекулярные взаимодействия были учтены Я. ван дер Ваальсом (1873) при объяснении физических свойств реальных газов и жидкостей.          В начале 20 в. М. ф. вступает в новый период своего развития, характеризующийся доказательствами реального строения тел из молекул в работах Ж. Перрена и Т. Сведберга (1906), М. Смолуховского (См. Смолуховский) и А. Эйнштейна (1904—06), касающихся броуновского движения (См. Броуновское движение) микрочастиц, и исследованиями молекулярной структуры веществ. Применение для этих целей дифракции рентгеновских лучей в работах М. Лауэ (1912), У. Г. Брэгга и У. Л. Брэгга (1913), Г. В. Вульфа (1913), А. Ф. Иоффе (1924), В. Стюарда (1927—31), Дж. Бернала (1933), В. И. Данилова (1936) и др., а в дальнейшем и дифракции электронов и нейтронов дало возможность получить точные данные о строении кристаллических твёрдых тел и жидкостей. Учение о межмолекулярных взаимодействиях на основании представлений квантовой механики (См. Квантовая механика) получило развитие в работах М. Борна (1937—39), П. Дебая (См. Дебай) (30-е гг. 20 в.), Ф. Лондона (1927) и В. Гейтлера (1927). Теория переходов из одного агрегатного состояния в другое, намеченная в 19 в. Я. ван дер Ваальсом и У. Томсоном (Кельвином) и развитая в работах Дж. Гиббса, Л. Ландау (1937), М. Фольмера (30-е гг. 20 в.) и их последователей, превратилась в современную теорию образования новой фазы — важный самостоятельный раздел М. ф. Объединение статистических методов с современными представлениями о структуре веществ в работах Я. И. Френкеля (1926 и др.), Г. Эйринга (1935—36), Дж. Бернала и др. привело к М. ф. жидких и твёрдых тел.          Круг вопросов, охватываемых М. ф., очень широк. В ней рассматриваются строение газов, жидкостей и твёрдых тел, их изменение под влиянием внешних условий (давления, температуры, электрического и магнитного полей), явления переноса (диффузия, теплопроводность, внутреннее трение), фазовое равновесие и процессы фазовых переходов (кристаллизация и плавление, испарение и конденсация и др.), Критическое состояние вещества, поверхностные явления на границах раздела различных фаз.

         Интенсивное развитие М. ф. привело к выделению из неё ряда крупных самостоятельных разделов, таких, например, как статистическая физика, кинетика физическая, физика твёрдого тела, физическая химия, молекулярная биология.

         Современная наука и техника используют всё большее число новых веществ и материалов. Выявившиеся особенности строения этих тел привели к развитию различных научных подходов к их исследованию. Так, на основе общих теоретических представлений М. ф. получили развитие такие специальные области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. Сюда же можно отнести также новую область науки — физико-химическую механику (См. Физико-химическая механика), которая составляет теоретическую основу современного материаловедения, указывая пути создания технически важных материалов с требуемыми физическими свойствами. При всём различии объектов и методов исследования здесь сохраняется, однако, основная идея М. ф.: описание макроскопических свойств вещества, исходя из особенностей микроскопической (молекулярной) картины его строения.

        

         Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Гиршфельдер Дж., Кертисс Ч. и Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Френкель Я. И., Собр. избр. трудов, т. 3. — Кинетическая теория жидкостей, М. — Л., 1959; Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; Киттель Ч., Введение в физику твёрдого тела, пер. с англ., М., 1957; Лихтман В. И., Щукин Е. Д., Ребиндер П. А., Физико-химическая механика металлов, М., 1962.

         П. А. Ребиндер, Б. В. Дерягин, Н. В. Чираев.

dic.academic.ru

Молекулярная физика — WiKi

История

Первым сформировавшимся разделом молекулярной физики была кинетическая теория газов. В процессе её развития работами Джеймса Клерка Максвелла, Людвига Больцмана , Дж. У. Гиббса была создана классическая статистическая физика.

Количественные представления о взаимодействии молекул (молекулярных силах) начали развиваться в теории капиллярных явлений. Классические работы в этой области Алекси Клод Клеро (1743), Пьера-Симона Лапласа (1806), Томаса Юнга (1805), С. Д. Пуассона , Карла Фридриха Гаусса (1830—1831) и других положили начало теории поверхностных явлений. Межмолекулярные взаимодействия были учтены Й. Д. Ван-дер-Ваальсом (1873) при объяснении физических свойств реальных газов и жидкостей.

В начале XX века молекулярная физика вступила в новый этап развития. В работах Жана Батиста Перрена и Теодора Сведберга (1906), Мариан Смолуховского и Альберта Эйнштейна (1904—06), посвященных броуновскому движению микрочастиц, были получены доказательства реальности существования молекул.

Методами рентгеновского структурного анализа (а впоследствии методами электронографии и нейтронографии) были изучены структура твёрдых тел и жидкостей и её изменения при фазовых переходах и изменении температуры, давления и других характеристик. Учение о межатомных взаимодействиях на основе представлений квантовой механики получило развитие в работах Макса Борна, Фрица Лондона и Вальера Гайтлера, а также Петера Дебая. Теория переходов из одного агрегатного состояния в другое, намеченная Ван-дер-Ваальсом и Уильямом Томсоном и развитая в работах Гиббса (конец XIX века), Льва Давидовича Ландау и Макса Фольмера (1930-е) и их последователей, превратилась в современную теорию образования фазы — важный самостоятельный раздел физики. Объединение статистических методов с современными представлениями о структуре вещества в работах Якова Ильича Френкеля, Генри Эйринга (1935—1936), Джона Десмонда Бернала и других привело к молекулярной физике жидких и твёрдых тел.

Задачи науки

Круг вопросов, охватываемых молекулярной физикой, очень широк. В ней рассматриваются: строение вещества и его изменение под влиянием внешних факторов (давления, температуры, электромагнитного поля), явления переноса (диффузия, теплопроводность, вязкость), фазовое равновесие и процессы фазовых переходов (кристаллизация, плавление, испарение, конденсация), критическое состояние вещества, поверхностные явления на границах раздела фаз.

Развитие молекулярной физики привело к выделению из неё самостоятельных разделов: статистической физики, физической кинетики, физики твёрдого тела, физической химии, молекулярной биологии. На основе общих теоретических представлений молекулярной физики получили развитие физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химия дисперсных систем и поверхностных явлений, теория массопереноса и теплопереноса, физико-химическая механика. При всём различии объектов и методов исследования здесь сохраняется, однако, главная идея: молекулярная физика — описание макроскопических свойств вещества на основе микроскопической (молекулярной) картины его строения.

Литература

  • Ахматов А. С. Молекулярная физика граничного трения. М.: ФМЛ, 1963. — 472с.
  • Гиршфельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: ИЛ, 1961. — 931с.
  • Дерягин Б. В., Чураев Н. В., Муллер В. М. Поверхностные силы. М.: Наука, 1985.
  • Квасников И. А. Молекулярная физика. М.: Едиториал УРСС, 2011. — 230с. ISBN 978-5-8360-0560-3
  • Кикоин А. К., Кикоин И. К. Молекулярная физика. 2-е изд. М.: Наука, 1976.
  • Матвеев А. Н. Молекулярная физика. М.: Высшая школа, 1981. — 400 с.
  • Оно С. Кондо С. Молекулярная теория поверхностного натяжения в жидкостях. Пер. с англ. М.: ИИЛ, 1963. — 292с.
  • Радченко И. В. Молекулярная физика. — М.: Наука, 1965 −480c.
  • Резибуа П., Де Ленер М. Классическая кинетическая теория жидкостей и газов. Пер. с англ. М.: Мир, 1980.
  • Телеснин Р. В. Молекулярная физика. 2-е изд. М.: Высшая школа, 1973.
  • Фишер И. З. Статистическая теория жидкостей. Наука, 1961. — 280с.
  • Френкель Я. И. Кинетическая теория жидкостей. М.: Наука, 1975. — 592с.

См. также

ru-wiki.org

Термодинамика и молекулярная физика.

§24. Предмет молекулярной физики.

Определение: Молекулярной физикой называется раздел физики изучающий зависимости строения и физических

свойств тел от характера движения и взаимодействия между частицами, из которых состоят тела.

Молекулярная физика основывается на молекулярно-кинетической теории строения вещества, согласно которой все тела состоят из мельчайших частиц (атомы, молекулы, ионы), которые находятся в некотором хаотическом движении, называемым тепловым движением, данные эти неоднократно подтверждались.

В молекулярно-кинетической теории с единой точки зрения рассматриваются разнообразные физические явления, протекание которых зависит от движения и взаимодействия частиц вещества. Например, эта теория позволяет понять механизм упругих свойств твёрдых тел, электропроницаемости различных по своей природе проводников электрического тока, вскрывает причины внутреннего трения в газах и жидкостях, объясняет электромагнитные свойства различных веществ и т.д.

В различных агрегатных состояниях вещества характер движения и взаимодействия частиц не одинаков. У газообразных тел взаимодействие между частицами на расстоянии практически отсутствует, поэтому газ не сохраняет форму и объём. Взаимодействие между частицами происходит только при непосредственном соприкосновении. Каждая частица между двумя соседними соударениями движется прямолинейно и равномерно. В твёрдых телах взаимодействие между частицами столь велико, что каждая из них находится на определённой позиции, называемой узлом кристаллической решётки. Каждая частица совершает колебания относительно устойчивого положения равновесия (узла). Если бы не дефекты кристаллической решётки, то колебания частиц носили бы гармонический характер (sin,cos), а т.к. в любом кристалле существуют дефекты, то колебания носятангармонический характер.Жидкость находится в промежуточном состоянии между газом и твёрдыми телами. Каждая частица жидкости за небольшой промежуток времени совершает колебания около какого-либо места. Если жидкость покоится, то перескоки в различных направлениях равновероятны. Если жидкость движется, то большинство перескоков происходит в сторону её движения. Жидкость сохраняет только объём, твёрдое тело объём и форму.

§25. Статистический, динамический и термодинамический методы исследования.

Любое тело состоит из огромного числа частиц, так в 1газа при нормальных условиях находятсямолекул, а в жидкостях и твёрдых телахмолекул. Если исследовать такие системы с помощью классической механики Ньютона, то для каждой системы необходимо будет записатьуравнений динамики, затем полученную систему уравнений решить (нереально). Поэтому при исследовании таких систем используется статистический метод.

Определение:Статистическим называется метод, основанный на использовании теории вероятности и определён-

ных моделей строения вещества.

Определение:Статистической физикой называется раздел физики, изучающий свойства вещества с помощью

статистического метода.

В совокупном поведении огромного числа частиц появляются особые закономерности, которые называются статистическими. Эти закономерности проявляются в том, что существует среднее значение физических величин, которые характеризуют движение и взаимодействие всей совокупности частиц системы. Например, у газов это средняя скорость движения молекул, у твёрдых тел средняя энергия приходящаяся на одну степень свободы колебаний частицы.

Определение:Динамическим называется метод, с помощью которого изучаются законы движения отдельной час-

тицы.

С помощью динамического метода исследования устанавливаются динамические закономерности. Связь между динамическими и статистическими закономерностями проявляются в том, что законы движения отдельной частицы влияют на свойства систем изучаемых статистическим методом.

Определение:Термодинамикой называется раздел физики изучаемый различные превращения энергий в системе.

При термодинамическом исследовании не требуются знания о характере движения и взаимодействия отдельных частиц. Термодинамика исследует физические свойства систем исходя из условий различных превращений энергий и соотношения между разными видами энергий.

Термодинамика базируется на трёх законах (началах): 1 и 2 начала получены при обобщении экспериментальных данных. 3 начало – это теорема Нёрнсто (о невозможности достижения абсолютного нуля).

studfiles.net