Алгоритм перевода чисел из десятичной системы счисления в двоичную. Десятичной системы счисления в двоичную систему счисления


Как перевести из десятичной системы в двоичную, алгоритм перевода чисел

В заданиях по информатике часто требуется перевести число из десятичной в двоичную систему счисления. Чтобы выполнить такое задание, нужно воспользоваться алгоритмом перевода числа из десятичной системы счисления в двоичную. Для проверки результата достаточно выполнить обратное действие: перевести число из двоичной системы в десятичную. А также можно воспользоваться онлайн калькулятором для перевода чисел из одной системы счисления в другую

Алгоритм перевода из десятичной системы в двоичную

  1. Выполнить деление исходного числа на 2. Если результат деления больше или равен 2, продолжать делить его на 2 до тех пор, пока результат деления не станет равен 1.
  2. Выписать результат последнего деления и все остатки от деления в обратном порядке в одну строку.

Примеры перевода чисел из десятичной системы в двоичную

Рассмотрим, как происходит перевод из одной системы счисления в другую на примерах:

Пример 1:

Перевести число 486 из десятичной системы в двоичную.

Решение:

Выполняем деление исходного числа на 2, пока возможно, и помечаем все остатки от деления:

Выписываем частное от последнего деления и остатки в обратном порядке:

Пример 2:

Перевести число 327 из десятичной системы в двоичную.

Решение:

Выполняем деление исходного числа на 2, пока возможно, и помечаем все остатки от деления:

Выписываем частное от последнего деления и остатки в обратном порядке:

Поделитесь статьей с одноклассниками «Как перевести из десятичной системы в двоичную, алгоритм перевода чисел».

При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.

worksbase.ru

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:0 – это ноль1 – это один (и это предел разряда)10 – это два11 – это три (и это снова предел)100 – это четыре101 – пять110 – шесть111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)38 / 2 = 19 (0 остаток)19 / 2 = 9 (1 остаток)9 / 2 = 4 (1 остаток)4 / 2 = 2 (0 остаток)2 / 2 = 1 (0 остаток)1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

inf1.info

Как переводить из десятичной системы счисления в двоичную

Десятичная (основанная на десяти) система счисления имеет 10 возможных значений (0,1,2,3,4,5,6,7,8 или 9) для каждого поместного значения. Двоичная система счисления (основанная на двух), в свою очередь, имеет два возможных значения каждого поместного значения – 0 или 1. Так как двоичная система является внутренним языком компьютеров, то серьезные программисты должны понимать, как переводить из десятичной системы счисления в двоичную, о чем вам и расскажет данная статья.

Способы представления чисел

Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0…9, А, В, …, F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

Алгоритм перевода чисел из одной системы счисления в другую

Перевод целых десятичных чисел в любую другую системы счисления осуществляется делением числа на основание новой системы счисления до тех пор, пока в остатке не останется число меньшее основания новой системы счис­ления. Новое число записывается в виде остатков деления, начиная с последнего.Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода. В результате выполнения каждой операции умножения формируется одна цифра нового числа начиная со старшего.Перевод неправильной дроби осуществляется по 1 и 2 правилу. Целую и дробную часть записывают вместе, отделяя запятой.

ПРИМЕР №1.

Перевод из 2 в 8 в 16 системы счисления.Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

ПРИМЕР №2. 1010111010,1011 = 1.010.111.010,101.1 = 1272,518здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.ПРИМЕР №3. 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEXздесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2, 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

ПРИМЕР №4.

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.Например, 1000110 = 1 000 110 = 1068
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.Например, 1000110 = 100 0110 = 4616

Позиционной называется система, для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.Таблица соответствия систем счисления:

Двоичная СС Шестнадцатеричная СС
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Таблица для перевода в восьмеричную систему счисления

Двоичная СС Восьмеричная СС
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

bichka.info

Алгоритм перевода чисел из десятичной системы счисления в двоичную.

Для перевода чисел из десятичной системы счисления в двоичную используют так называемый "алгоритм замещения", состоящий из следующей последовательности действий:

1. Делим десятичное число А на 2. Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит двоичного числа.

2. Если частное q не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток (0 или 1) записывается в разряды двоичного числа в направлении от младшего бита к старшему.

3. Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a = 1.

Например, требуется перевести десятичное число 247 в двоичное. В соответствии с приведенным алгоритмом получим:

24710 : 2 = 12310
24710 - 24610 = 1, остаток 1 записываем в МБ двоичного числа.
12310 : 2 = 6110
12310 - 12210 = 1, остаток 1 записываем в следующий после МБ разряд двоичного числа.
6110 : 2 = 3010
6110 - 6010 = 1, остаток 1 записываем в старший разряд двоичного числа.
3010 : 2 = 1510
3010 - 3010 = 0, остаток 0 записываем в старший разряд двоичного числа.
1510 : 2 = 710
1510 - 1410 = 1, остаток 1 записываем в старший разряд двоичного числа.
710 : 2 = 310
710 - 610 = 1, остаток 1 записываем в старший разряд двоичного числа.
310 : 2 = 110
310 - 210 = 1, остаток 1 записываем в старший разряд двоичного числа.
110 : 2 = 010, остаток 1 записываем в старший разряд двоичного числа.

Таким образом, искомое двоичное число равно 111101112.

Перевод чисел из двоичной системы в десятичную.

Задача перевода чисел из двоичной системы счисления в десятичную чаще всего возникает уже при обратном преобразовании вычисленных либо обработанных компьютером значений в более понятные пользователю десятичные цифры. Алгоритм перевода двоичных чисел в десятичные достаточно прост (его иногда называют алгоритмом замещения): Для перевода двоичного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания двоичной системы счисления на соответствующие цифры в разрядах двоичного числа.

Например, требуется перевести двоичное число 10110110 в десятичное. В этом числе 8 цифр и 8 разрядов (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 2:

101101102=(1·27)+(0·26)+(1·25)+(1·24)+(0·23)+(1·22)+(1·21)+(0·20)= 128+32+16+4+2 = 18210

Из этого примера видно, в частности, что десятичная система счисления более компактно отображает числа - 3 цифры (т.е. бита) вместо 8 цифр в двоичной системе счисления.

 

Теория графов. Основные понятия теории графов.

Определение. Если на плоскости задать конечное множество V точек и конечный набор линий Х, соединяющих некоторые пары из точек V, то полученная совокупность точек и линий будет называться графом.

При этом элементы множества V называются вершинами графа, а элементы множества Х – ребрами.

В множестве V могут встречаться одинаковые элементы, ребра, соединяющие одинаковые элементы называются петлями. Одинаковые пары в множестве Х называются кратными (или параллельными) ребрами. Количество одинаковых пар (v, w) в Х называется кратностьюребра (v, w).

Множество V и набор Х определяют граф с кратными ребрами – псевдограф. G = (V, X)

Псевдограф без петель называется мультиграфом.

Если в наборе Х ни одна пара не встречается более одного раза, то мультиграф называется графом.

Если пары в наборе Х являются упорядочными, то граф называется ориентированным или орграфом.

Графу соответствует геометрическая конфигурация. Вершины обозначаются точками (кружочками), а ребра – линиями, соединяющими соответствующие вершины.

Определение. Если х = {v, w} – ребро графа, то вершины v, w называются концами ребра х. Если х = (v, w) – дуга орграфа, то вершина v – начало, а вершина w – конец дуги х.

Определение. Вершины v, w графа G = (V, X) называются смежными, если {v,w}ÎX. Два ребра называются смежными, если они имеют общую вершину.

Определение. Степенью вершины графа называется число ребер, которым эта вершина принадлежит. Вершина называется изолированной, если ее степень равна единице и висячей, если ее степень равна нулю.

Определение.Графы G1(V1, X1) и G2(V2, X2) называются изоморфмными, если существует взаимно однозначное отображение j: V1 ® V2, сохраняющее смежность.

Определение. Маршрутом (путем) для графа G(V, X) называется последовательность v1x1v2x2v3…xkvk+1. Маршрут называется замкнутым, если его начальная и конечная точки совпадают. Число ребер (дуг) маршрута (пути) графа называется длиноймаршрута (пути).

Определение. Незамкнутый маршрут (путь) называется цепью. Цепь, в которой все вершины попарно различны, называется простой цепью.

Определение. Замкнутый маршрут (путь) называется циклом (контуром). Цикл, в котором все вершины попарно различны, называется простым циклом.

Определение. Вершина w графа D (или орграфа) называется достижимой из вершины v, если либо w=v, либо существует путь из v в w(маршрут, соединяющий v и w).

Определение. Граф (орграф) называется связным, если для любых двух его вершин существует маршрут (путь), который их связывает. Орграф называется односторонне связным, если для любых двух его вершин по крайней мере одна достижима из другой.

Определение. Псевдографом D(V,X), ассоциированным с ориентированным псевдографом, называется псевдограф G(V, X0) в котором Х0 получается из Х заменой всех упорядоченных пар (v, w) на неупорядоченные пары (v, w).

Определение.Орграф называется слабо связным, если связным является ассоциированный с ним псевдограф.

Определение. Цепь (цикл) в псевдографе G называется эйлеровым, если она проходит по одному разу через каждое ребро псевдографа G.

Теорема 26.1. Для того, чтобы связный псевдограф G обладал эйлеровым циклом, необходимо и достаточно, чтобы степени его вершин были четными.

Теорема 26.2. Для того, чтобы связный псевдограф G обладал эйлеровой цепью, необходимо и достаточно, чтобы он имел ровно две вершины нечетной степени.

Определение. Цикл (цепь) в псевдографе G называется гамильтоновым, если он проходит через каждую вершину псевдографа G ровно один раз.

Пример 26.1.

 
 

 

- в графе есть и эйлеровый и гамильтонов циклы

 
 
 
 

 

- в графе есть эйлеров цикл, но нет гамильтонова

 

 

- в графе есть гамильтонов, но нет эйлерова цикла

 

- в графе нет ни эйлерова, ни гамильтонова цикла

 

Граф G называется полным, если каждая его вершина смежна со всеми остальными вершинами. В полном графе всегда существуют гамильтоновы циклы.

Также необходимым условием существования гамильтонова цикла является связность графа.

 



infopedia.su

Системы счисления, преобразование систем счисления, примеры перевода систем счисления

В мире существует много разных систем счисления: десятичная, двоичная, восьмеричная, двенадцатеричная, двадцатеричная, шестнадцатеричная, шестидесятеричная и др.

Каждую систему счисления мы разбирать не будем, так как нам это не пригодится, гораздо важнее разобраться в двух системах счисления для решения любых сетевых задач: десятичной и двоичной, я называю их «системами счисления в IP».

Для успешной сдачи тестов, экзаменов, контрольных и прочих работ, вам также потребуется знать о восьмеричной и шестнадцатеричной системе счисления. С ними гораздо легче будет разобраться, если вы овладеете двоичной системой счисления.

Итак, разбираемся в первых двух.

Системы счисления в ip

При делении сетей на подсети мы часто будет переводить ip адрес и маску из десятичной системы счисления в двоичную, и обратно. Именно поэтому я их назвал системами счисления ip.

Давайте скорее познакомимся с ними, научимся преобразовывать между собой и посмотрим много простых и понятных примеров.

Десятичная система счисления

Десятичная система счисления известна всем нам очень подробно, мы ею пользуемся каждый день (при оплате за транспорт, подсчёте количества штук чего либо, арифметические операции над числами). В десятичную систему счисления входят 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Десятичная система счисления является позиционной системой, потому что зависит от того, в каком месте числа (в каком разряде, на какой позиции) стоит цифра. Т.е. 001 – единица, 010 – это уже десять, 100 – а это сто. Мы видим, что менялась только позиция одной цифры (единицы), а число менялось очень значительно.

В любой позиционной системе счисления позиция цифры представляет собой цифру, помноженную на число основания системы счисления в степени позиции этой цифры. Посмотрите на пример, и станет всё ясно.

Число десятичное 123 = (1 * 10^2) + (2 * 10^1) + (3 * 10^0) = (1*100) + (2*10) + (3*1)

Число десятичное 209 = (2 * 10^2) + (0 * 10^1) + (9 * 10^0) = (2*100) + (0*10) + (9*1)

Двоичная система счисления

Двоичная система счисления нам может быть и вовсе не знакома, но поверьте, она намного проще, чем привычная нам десятичная система. В двоичную систему счисления входят всего 2 цифры: 0 и 1. Это сравнимо с лампочкой, когда она не горит – это 0, а когда свет включен – это 1.

Двоичная система счисления, как и десятичная, является позиционной.

Число двоичное 1111 = (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*8) + (1*4) + (1*2) + (1*1) = 8 + 4 + 2 + 1 = 15 (десятичное).

Число двоичное 0000 = (0*2^3) + (0*2^2) + (0*2^1) + (0*2^0) = (0*8) + (0*4) + (0*2) + (0*1) = 8 + 4 + 2 + 1 = 0 (десятичное).

Хотели мы того, или нет, но мы уже преобразовали 2 двоичных числа в десятичные. Рассмотрим более подробно дальше.

Из двоичной в десятичную систему счисления

Из двоичной системы счисления в десятичную систему счисления переводить не сложно, надо выучить степени двойки от 0 до 15, хотя в большинстве случаев будет достаточным от 0 до 7. Это связано с восемью битами каждого октета в ip адресе.

Для преобразования двоичного числа надо будет каждую цифру помножить на число 2 (основание системы счисления) в степени позиции той цифры, а затем сложить те цифры. В примерах ниже всё будет ясно.

Начнем с простых чисел и закончим числами из восьми цифр.

Число двоичное 111 = (1*2^2) + (1*2^1) + (1*2^0) = (1*4) + (1*2) + (1*1) = 4 + 2 + 1 = 7 (десятичное).

Число двоичное 001 = (0*2^2) + (0*2^1) + (1*2^0) = (0*4) + (0*2) + (1*1) = 0 + 0 + 1 = 1 (десятичное).

Число двоичное 100 = (1*2^2) + (0*2^1) + (0*2^0) = (1*4) + (0*2) + (0*1) = 4 + 0 + 0 = 4 (десятичное).

Число двоичное 101 = (1*2^2) + (0*2^1) + (1*2^0) = (1*4) + (0*2) + (1*1) = 4 + 0 + 1 = 5 (десятичное).

Точно таким же образом можно преобразовать любое двоичное число в десятичное.

Число двоичное 1010 = (1*2^3) + (0*2^2) + (1*2^1) + (0*2^0) = (1*8) + (0*4) + (1*2) + (0*1) = 8 + 0 + 2 + 0 = 10 (десятичное).

Число двоичное 10000001 = (1*2^7) + (0*2^6) + (0*2^5) + (0*2^4) + (0*2^3) + (0*2^2) + (0*2^1) + (1*2^0) = (1*128) + (0*64) + (0*32) + (0*16) + (0*8) + (0*4) + (0*2) + (1*1) = 128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 129 (десятичное).

А так же когда вам надоест считать действия с нулями, то пропускайте их. Ваши подсчёты станут краткими и красивыми.

Число двоичное 10000001 = (1*2^7) + (1*2^0) = (1*128) + (1*1) = 128 + 1 = 129 (десятичное).

Число двоичное 10000011 = (1*2^7) + (1*2^1) + (1*2^0) = (1*128) + (1*2) + (1*1) = 128 + 2 + 1 = 131 (десятичное).

Число двоичное 01111111 = (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*64) + (1*32) + (1*16) + (1*8) + (1*4) + (1*2) + (1*1) = 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127 (десятичное).

Число двоичное 11111111 = (1*2^7) + (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*128) + (1*64) + (1*32) + (1*16) + (1*8) + (1*4) + (1*2) + (1*1) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (десятичное).

Число двоичное 01111011 = (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^1) + (1*2^0) = (1*64) + (1*32) + (1*16) + (1*8) + (1*2) + (1*1) = 64 + 32 + 16 + 8 + 2 + 1 = 123 (десятичное).

Число двоичное 11010001 = (1*2^7) + (1*2^6) + (1*2^4) + (1*2^0) = (1*128) + (1*64) + (1*16) + (1*1) = 128 + 64 + 16 + 1 = 209 (десятичное).

Вот и справились. Теперь переведём всё обратно из двоичной в десятичную.

Из десятичной в двоичную систему счисления

Перевод из десятичной системы счисления в двоичную систему тоже не труден, только вместо сложения потребуется вычитание.

Последовательность перевода в десятичную систему счисления следующая: надо вычесть из переводимого числа ближайшее (меньшее или равное) число к нему из степеней двойки. Затем проделать тоже самое с получившимся значением, и так до нуля. В зависимости от используемой степени двойки записать цифру 1 в нужном разряде двоичного числа, пропуски заполнить единицами.

Смотрите примеры, и вопросы отпадут сами собой.

Число десятичное 7: 7-4=3 - ближайшее меньшее (или равное) число к 7 из степеней двойки это 4 (2^2). Вычитаем из 7 число 4, получаем 3. Затем 3-2=1 - ближайшее меньшее (или равное) число к 3 из степеней двойки это 2 (2^1). Вычитаем из 3 число 2, получаем 1. 1-1=0 - ближайшее меньшее (или равное) число к 1 из степеней двойки это 1 (2^0). Вычитаем из 1 число 1, получаем 0. Всего из нашего числа мы вычли 4, 2 и 1, т.е. 2^2, 2^1 и 2^0. Ставим единицы в разряды по степеням двоек – 111. Если мы считаем октетом, то надо добавить нули – 00000111. Готово.

Чтобы не сбивать вас, уберём слова:

Число десятичное 10: 10-8=2; 2-2=0. Двоичное число – 00001010.

Число десятичное 129: 129-128=1; 1-1=0. Двоичное число – 10000001.

Число десятичное 131: 131-128=3; 3-2=1; 1-1=0. Двоичное число – 10000011.

Число десятичное 127: 127-64=63; 63-32=31; 31-16=15; 15-8=7; 7-4=3; 3-2=1; 1-1=0. Двоичное число – 01111111.

Число десятичное 255: 255-128=127; 127-64=63; 63-32=31; 31-16=15; 15-8=7; 7-4=3; 3-2=1; 1-1=0. Двоичное число – 11111111.

Число десятичное 123: 123-64=59; 59-32=27; 27-16=11; 11-8=3; 3-2=1; 1-1=0. Двоичное число – 01111011.

Число десятичное 209: 209-128=81; 81-64=17; 17-16=1; 1-1=0. Двоичное число – 11010001.

Заключение

Как вы видите, переводить из двоичной системы счисления в десятичную систему счисления не очень сложно. Это преобразование мы будет часто использовать при делении сетей на подсети.

Попробуйте сами преобразовать ваши число и год рождения. Для проверки можете использовать виндовс-калькулятор в инженерном режиме или режиме Программист.

Уделите несколько минут для «систем счисления в ip» - двоичной и десятичной.

infocisco.ru

Перевод из одной системы счисления в другую

Для перевода чисел из одной системы счисления в другую необходимо владеть основными сведениями о системах счисления и форме представления чисел в них.

Количество s различных цифр, употребляемых в системе счисления, называется основанием, или базой системы счисления. В общем случае положительное число X в позиционной системе с основанием s может быть представлено в виде полинома:

где s - база системы счисления, - цифры, допустимые в данной системе счисления . Последовательность образует целую часть X, а последовательность - дробную часть X.

В вычислительной технике наибольшее применение нашли двоичная (BIN - binary), и двоично кодированные системы счисления: восьмеричная (OCT - octal), шестнадцатеричная (HEX - hexadecimal) и двоично-кодированная десятичная (BCD - binary coded decimal).

В дальнейшем для обозначения используемой системы счисления число будет заключаться в скобки, а в индексе указано основание системы. Число X по основанию s будет обозначено .

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат, то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления в другие системы.

Основанием системы счисления служит число 2 (s = 2) и для записи чисел используются только две цифры: 0 и 1. Чтобы представить любой разряд двоичного числа, достаточно иметь физический элемент с двумя чётко различными устойчивыми состояниями, одно из которых изображает 1, а другое 0.

Прежде чем заняться переводом из любой системы счисления в двоичную, нужно внимательно изучить пример записи числа в двоичной системе счисления:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат, то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления в другие системы.

Эти системы счисления относятся к двоично-кодированным, в которых основание системы счисления представляет собой целую степень двойки: - для восьмеричной и - для шестнадцатеричной.

В восьмеричной системе счисления(s = 8) используются 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7.

Прежде чем заняться переводом из любой системы счисления в восьмеричную, нужно внимательно изучить пример записи числа в восьмеричной системе:

В шестнадцатеричной системе счисления (s = 16) используются 16 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Пример записи числа в шестнадцатеричной системе:

Широкое применение восьмеричной и шестнадцатеричной систем счисления обусловлено двумя факторами.

Во-первых, эти системы позволяют заменить запись двоичного числа более компактным представлением (запись числа в восьмеричной и шестнадцатеричной системах будет соответственно в 3 и 4 раза короче двоичной записи этого числа). Во-вторых, взаимное преобразование чисел между двоичной системой с одной стороны и восьмеричной и шестнадцатиречной - с другой осуществляется сравнительно просто. Действительно, поскольку для восьмеричного числа каждый разряд представляется группой из трёх двоичных разрядов (триад), а для шестнадцатеричного - группой из четырёх двоичных разрядов (тетрад), то для преобразования двоичного числа достаточно объединить его цифры в группы по 3 или 4 разряда соответственно, продвигаясь от разделительной запятой вправо и влево. При этом, в случае необходимости, добавляют нули слева от целой части и/или справа от дробной части и каждую такую группу - триаду или тетраду - заменяют эвивалентной восьмеричной или шестнадцатеричной цифрой (см. таблицу).

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат, то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления в другие системы.

Соответствие между цифрами в различных системах счисления
DECBINOCTHEXBCD
00000000000
10001110001
20010220010
30011330011
40100440100
50101550101
60110660110
70111770111
810001081000
910011191001
10101012A0001 0000
11101113B0001 0001
12110014C0001 0010
13110115D0001 0011
14111016E0001 0100
15111117F0001 0101

Для обратного перевода каждая OCT или HEX цифра заменяется соответственно триадой или тетрадой двоичных цифр, причём незначащие нули слева и справа отбрасываются.

Для рассмотренных ранее примеров это выглядит следующим образом:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат, то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления в другие системы.

В двоично-десятичной системе вес каждого разряда равен степени 10, как в десятичной системе, а каждая десятичная цифра кодируется четырьмя двоичными цифрами. Для записи десятичного числа в BCD-системе достаточно заменить каждую десятичную цифру эквивалентной четырёхразрядной двоичной комбинацией:

Любое десятичное число можно представить в двоично-десятичной записи, но следует помнить, что это не двоичный эквивалент числа. Это видно из следующего примера:

Пусть X - число в системе счисления с основанием s, которое требуется представить в системе с основанием h. Удобно различать два случая.

В первом случае и, следовательно, при переходе к основанию h можно использовать арифметику этой системы. Метод преобразования состоит в представлении числа в виде многочлена по степеням s, а также в вычислении этого многочлена по правилам арифметики системы счисления с основанием h. Так, например, удобно переходить от двоичной или восьмеричной системы счисления к десятичной. Описанный приём иллюстрируют следующие примеры:

.

.

В обоих случаях арифметические действия выполняются по правилам системы счисления с основанием 10.

Во втором случае () удобнее пользоваться арифметикой по основанию s. Здесь следует учитывать, что перевод целых чисел и правильных дробей производится по различным правилам. При переводе смешанных дробей целая и дробная части переводятся каждая по своим правилам, после чего полученные числа записываются через запятую.

Перевод целых чисел

Правила перевода целых чисел становится ясным из общей формулы записи числа в произвольной позиционной системе. Пусть число в исходной системе счисления s имеет вид . Требуется получить запись числа в системе счисления с основанием h:

.

Для нахождения значений разделим этот многочлен на h:

.

Как видно, младший разряд , то есть , равен первому остатку. Следующий значащий разряд определяется делением частного на h:

.

Остальные также вычисляются путём деления частных до тех пор, пока не станет равным нулю.

Для перевода целого числа из s-ичной системы счисления в h-ичную необходимо последовательно делить это число и получаемые частные на h (по правилам системы счисления с основанием h) до тех пор, пока частное не станет равным нулю. Старшей цифрой в записи числа с основанием h служит последний остаток, а следующие за ней цифры образуют остатки от предшествующих делений, выписываемые в последовательности, обратной их получению.

Пример 1. Перевести число 75 из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы.

Решение:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат, то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления в другие системы.

Перевод правильных дробей

Правильную дробь , имеющую в системе с основанием s вид , можно выразить в системе счисления с основанием h как многочлен вида

Старшая цифра может быть найдена умножением этого многочлена на h, т.е.

Если это произведение меньше 1, то цифра равна 0, если же оно больше или равно 1, то цифра равна целой части произведения. Следующая цифра справа определяется путём умножения дробной части указанного выше произведения на h и выделения его целой части и т.д. Процесс может оказаться бесконечным, т.к. не всегда можно представить дробь по основанию h конечным набором цифр.

Для перевода правильной дроби из системы счисления с основанием s в систему счисления с основанием h нужно умножать исходную дробь и дробные части получающихся произведений на основание h (по правилам "старой" s-системы счисления). Целые части полученных произведений дают последовательность цифр дроби в h-системе счисления.

Описанная процедура продолжается до тех пор, пока дробная часть очередного произведения не станет равной нулю либо не будет достигнута требуемая точность изображения числа X в h-ичной системе счисления. Представлением дробной части числа X в новой системе счисления будет последовательности целых частей полученных произведений, записанных в порядке их получения и изображённых h-ичной цифрой. Абсолютная погрешность перевода числа X при p знаков после запятой равняется .

Пример 2. Перевести правильную дробь 0,453 из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления.

* В двоичную систему:

Ответ:

** В восьмеричную систему:

Ответ:

*** В шестнадцатеричную систему:

Ответ: так как , то

Поделиться с друзьями

function-x.ru

Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 4
5 101 12 10
6 110 20 11
7 111 21 12
8 1000 22 13
9 1001 100 14
10 1010 101 20
11 1011 102 21
12 1100 110 22
13 1101 111 23
14 1110 112 24
15 1111 120 30

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10
11
12 10
13 11
14 12
15 13

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru