Найти площадь поверхности правильной треугольной пирамиды. Формула полной площади поверхности пирамиды


Формулы площади поверхности тел

Площадь поверхности геометрической фигуры измеряется в квадратных единицах.  Очень часто используется в повседневной жизни, в строительстве, на производствах.  Например, нужно вам покрасить комнату, зная сколько краски используется на кв. метр,  и площади стен комнаты легко можно вычислить, сколько всего вам нужно купить краски.

Различают два вида площадей поверхности тел: Sбок — площадь боковой поверхности тела, и Р — площадь полной поверхности тела, которая равна сумме площадей боковой поверхности и основания тела.

Содержание статьи:

Формула площади поверхности призмы

Площадь боковой поверхности прямой призмы равна периметру основания умноженному на высоту призмы (высота=боковому ребру).

Sбок = ph=pl

р — периметр основания;

h — высота;

l — боковое ребро.

Формула площади поверхности куба

Площадь боковой поверхности куба равна числу боковых граней умноженному на квадрат ребра.

Sбок = 4a2

Площадь полной поверхности куба равна числу всех граней куба умноженному на квадрат ребра.

P = 6a2

а — ребро куба.

Формула площади поверхности пирамиды

1) Правильная пирамида:

Sбок = 1/2pA

p — периметр основания;

A — апофема.

Sбок = S/cos φ

S — площадь основания;

φ — угол между боковой гранью и основанием пирамиды.

Sбок = Sгр n

Sгр — площадь одной боковой грани;n — количество боковых граней пирамиды.

2) Правильная усеченная пирамида:

Sбок = 1/2(p1 + p2)A

p1 ,p2— периметры оснований;

A — апофема.

Р = Sбок + S1 + S2

Р — площадь полной поверхности правильной усеченной пирамиды;

Sбок— площадь боковой поверхности правильной усеченной пирамиды;

S1 + S2 — площади оснований.

Формула площади поверхности цилиндра

Sбок = 2πrh = πdh

P = 2πr2+2πrh = 2π(r+h)

P — площадь полной поверхности цилиндра;

r — радиус цилиндра;

d — диаметр цилиндра;

h — высота цилиндра.

Формула площади поверхности конуса

1) Прямой круговой конус:

Sбок = πrl = 1/2 πdl

P = πr2 + πrl= πr(r+l)

P — площадь полной поверхности конуса;

r -радиус конуса;

d -диаметр конуса;

l — образующая конуса.

2) Усеченный прямой круговой конус:

Sбок = πl(r1 + r2) = 1/2πl(d1 + d2)

P = πl(r1 + r2) + π(r1 + r2)

P — площадь полной поверхности усеченного конуса;

r1, r2— радиусы оснований усеченного конуса;

d1, d2— диаметры оснований усеченного конуса;

l — образующая усеченного конуса.

Формула площади поверхности шара (сферы)

Шар — тело, созданное вращением полукруга вокруг диаметра.

Сфера — поверхность шара.

P = 4πR2 = πD2

Формула площади поверхности сферического сегмента

Сферический сегмент — часть сферы, что отсекается от сферы плоскостью.

Sсф. сегм. = 2πRh = π(a2 + h3)

Формула площади поверхности шарового сегмента

Шаровой сегмент — часть шара, что отсекается от шара плоскостью, и ограничивается кругом (основание шарового сегмента) и сферическим сегментом.

Sшар. сегм. = π(2Rh+a2)=π(h3+2a2)

R — радиус шара;

D — диаметр шара;

h — высота сегмента;

a — радиус основания сегмента.

Материалы по теме:

Поделиться с друзьями:

Загрузка...

matemonline.com

Площадь поверхности правильной треугольной пирамиды

В этом уроке:
  • Задача 1. Найти площадь полной поверхности пирамиды
  • Задача 2. Найти площадь боковой поверхности правильной треугольной пирамиды
  • Задача 3. Найти площадь полной поверхности правильной пирамиды
См. также материалы по теме:Как найти площадь поверхности пирамиды.Примечание. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√". 

Задача 1. Найти площадь полной поверхности правильной пирамиды

Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найти площадь полной поверхности пирамиды

Решение. В основании правильной треугольной пирамиды лежит равносторонний треугольник. Поэтому для решения задачи воспользуемся свойствами правильного треугольника:

Нам известна высота треугольника, откуда можно найти его площадь. h = √3/2 a a = h / (√3/2) a = 3 / (√3/2) a = 6 / √3

Откуда площадь основания будет равна: S = √3/4 a2 S = √3/4 ( 6 / √3 )2 S = 3√3

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам. Таким образом: OK / MK = cos 45 Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.

OK / MK = √2/2

Учтем, что OК равен радиусу вписанной окружности. Тогда OK = √3/6 a OK = √3/6 * 6/√3 = 1

Тогда OK / MK = √2/2 1 / MK = √2/2 MK = 2/√2

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника. Sбок = 1/2 (6 / √3 ) (2/√2) = 6/√6

Таким образом, площадь полной поверхности пирамиды будет равна S = 3√3 + 3 * 6/√6 S = 3√3 + 18/√6

Ответ: 3√3 + 18/√6

Задача 2. Найти площадь боковой поверхности правильной пирамиды

В правильной треугольной пирамиде высота равна 10 см, а сторона основания 16 см. Найти площадь боковой поверхности. 

Решение.   Поскольку основанием правильной треугольной пирамиды является равносторонний треугольник, то AO является радиусом описанной вокруг основания окружности.  (Это следует из свойств правильной пирамиды) 

Радиус окружности, описанной вокруг равностороннего треугольника найдем из его свойств  

Откуда длина ребер правильной треугольной пирамиды будет равна:  AM2 = MO2 + AO2  высота пирамиды известна по условию (10 см), AO = 16√3/3  AM2 = 100 + 256/3  AM = √(556/3) 

Каждая из сторон пирамиды представляет собой равнобедренный треугольник. Площадь равнобедренного треугольника найдем из первой формулы, представленной ниже     S = 1/2 * 16 sqrt(  (√(556/3) + 8) (√(556/3) - 8) )  S = 8 sqrt(  (556/3) - 64 )  S = 8 sqrt(  364/3 )  S = 16 sqrt(  91/3 ) 

Поскольку все три грани у правильной пирамиды равны, то площадь боковой поверхности будет равна  3S = 48 √(91/3) 

Ответ: 48 √(91/3) 

Задача 3. Найти площадь полной поверхности правильной пирамиды

Сторона правильной треугольной пирамиды равна 3 см а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найдите площадь полной поверхности пирамиды.

Решение.  Поскольку пирамида правильная, в ее основании лежит равносторонний треугольник. Поэтому площадь основания равна    So =   9 * √3/4    

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.   Таким образом:  OK / MK = cos 45  Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.  

OK / MK = √2/2 

Учтем, что OК равен радиусу вписанной окружности.

Тогда (по таблице соотношений в правильном треугольнике)  OK = √3/6 a   OK = √3/6 * 3 =   √3/2    

Тогда  OK / MK = √2/2  √3/2 / MK = √2/2  MK =   √3/√2 

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника.    Sбок = 1/2 * 3√( 3/2 )  

Откуда площадь полной поверхности будет равна   S =   9√3/4 + 3/2 √( 3/2 )  

 Объем правильной треугольной пирамиды | Описание курса | Площадь боковой поверхности правильной треугольной пирамиды 

   

profmeter.com.ua

Площадь поверхности правильной треугольной пирамиды

В этом уроке:
  • Задача 1. Найти площадь полной поверхности пирамиды
  • Задача 2. Найти площадь боковой поверхности правильной треугольной пирамиды
  • Задача 3. Найти площадь полной поверхности правильной пирамиды
См. также материалы по теме:Как найти площадь поверхности пирамиды.Примечание. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√". 

Задача 1. Найти площадь полной поверхности правильной пирамиды

Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найти площадь полной поверхности пирамиды

Решение. В основании правильной треугольной пирамиды лежит равносторонний треугольник. Поэтому для решения задачи воспользуемся свойствами правильного треугольника:

Нам известна высота треугольника, откуда можно найти его площадь. h = √3/2 a a = h / (√3/2) a = 3 / (√3/2) a = 6 / √3

Откуда площадь основания будет равна: S = √3/4 a2 S = √3/4 ( 6 / √3 )2 S = 3√3

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам. Таким образом: OK / MK = cos 45 Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.

OK / MK = √2/2

Учтем, что OК равен радиусу вписанной окружности. Тогда OK = √3/6 a OK = √3/6 * 6/√3 = 1

Тогда OK / MK = √2/2 1 / MK = √2/2 MK = 2/√2

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника. Sбок = 1/2 (6 / √3 ) (2/√2) = 6/√6

Таким образом, площадь полной поверхности пирамиды будет равна S = 3√3 + 3 * 6/√6 S = 3√3 + 18/√6

Ответ: 3√3 + 18/√6

Задача 2. Найти площадь боковой поверхности правильной пирамиды

В правильной треугольной пирамиде высота равна 10 см, а сторона основания 16 см. Найти площадь боковой поверхности. 

Решение.   Поскольку основанием правильной треугольной пирамиды является равносторонний треугольник, то AO является радиусом описанной вокруг основания окружности.  (Это следует из свойств правильной пирамиды) 

Радиус окружности, описанной вокруг равностороннего треугольника найдем из его свойств  

Откуда длина ребер правильной треугольной пирамиды будет равна:  AM2 = MO2 + AO2  высота пирамиды известна по условию (10 см), AO = 16√3/3  AM2 = 100 + 256/3  AM = √(556/3) 

Каждая из сторон пирамиды представляет собой равнобедренный треугольник. Площадь равнобедренного треугольника найдем из первой формулы, представленной ниже     S = 1/2 * 16 sqrt(  (√(556/3) + 8) (√(556/3) - 8) )  S = 8 sqrt(  (556/3) - 64 )  S = 8 sqrt(  364/3 )  S = 16 sqrt(  91/3 ) 

Поскольку все три грани у правильной пирамиды равны, то площадь боковой поверхности будет равна  3S = 48 √(91/3) 

Ответ: 48 √(91/3) 

Задача 3. Найти площадь полной поверхности правильной пирамиды

Сторона правильной треугольной пирамиды равна 3 см а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найдите площадь полной поверхности пирамиды.

Решение.  Поскольку пирамида правильная, в ее основании лежит равносторонний треугольник. Поэтому площадь основания равна    So =   9 * √3/4    

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.   Таким образом:  OK / MK = cos 45  Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.  

OK / MK = √2/2 

Учтем, что OК равен радиусу вписанной окружности.

Тогда (по таблице соотношений в правильном треугольнике)  OK = √3/6 a   OK = √3/6 * 3 =   √3/2    

Тогда  OK / MK = √2/2  √3/2 / MK = √2/2  MK =   √3/√2 

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника.    Sбок = 1/2 * 3√( 3/2 )  

Откуда площадь полной поверхности будет равна   S =   9√3/4 + 3/2 √( 3/2 )  

 Начать курс обучения

profmeter.com.ua

Площадь полной поверхности пирамиды четырехугольной формула

В треугольнике два угла равны 36 градусов и 73 градусов Найдите его третий угол Ответ дайте в градусах. Загрузить jpg. Попроси больше. 180 градусов-весь треугольник 180 — (36+73)=71 градусов. Ответ : третий угол равен 71 градусов. Комментарии; Отметить нарушение. 4.7. 6 оценок.

Как вычислить площадь пирамиды: основания, боковую и полную?

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

Формула для вычисления его площади самая простая, здесь «а» — снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение — «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

Условие. Найти общую площадь пирамиды, если в его основании лежит равносторонний треугольник со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Условие. Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2 ) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ. Искомое значение 267,576 мм 2 .

Условие. У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть прямоугольный треугольник. Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2 ) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2 ).

Условие. Дана правильная шестиугольная пирамида. Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2 ) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2 )=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания — 726√3 см 2 , боковой поверхности — 3960 см 2 , вся площадь — 5217 см 2 .

Площадь полной поверхности пирамиды четырехугольной формула

Как вычислить площадь пирамиды: основания, боковую и полную?

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

Формула для вычисления его площади самая простая, здесь «а» — снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение — «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

Условие. Найти общую площадь пирамиды, если в его основании лежит равносторонний треугольник со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Условие. Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2 ) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ. Искомое значение 267,576 мм 2 .

Условие. У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть прямоугольный треугольник. Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2 ) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2 ).

Условие. Дана правильная шестиугольная пирамида. Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2 ) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2 )=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания — 726√3 см 2 , боковой поверхности — 3960 см 2 , вся площадь — 5217 см 2 .

Площадь полной поверхности пирамиды четырехугольной формула

Как найти площадь поверхности пирамиды?

Какую фигуру мы называем пирамидой? Во-первых, это многогранник. Во-вторых, в основании этого многогранника расположен произвольный многоугольник, а стороны пирамиды (боковые грани) обязательно имеют форму треугольников, сходящихся в одной общей вершине. Вот теперь, разобравшись с термином, выясним, как найти площадь поверхности пирамиды.

Понятно, что площадь поверхности такого геометрического тела составится из суммы площадей основания и всей его боковой поверхности.

Вычисление площади основания пирамиды

Выбор расчетной формулы зависит от формы лежащего в основании нашей пирамиды многоугольника. Он может быть правильным, то есть со сторонами одинаковой длины, или неправильным. Рассмотрим оба варианта.

В основании – правильный многоугольник

Из школьного курса известно:

    площадь квадрата будет равна длине его стороны, возведенной в квадрат; площадь равностороннего треугольника равна квадрату его стороны, деленному на 4 и умноженному на квадратный корень из трех.

Но существует и общая формула, для расчета площади любого правильного многоугольника (Sn): надо умножить значение периметра этого многоугольника (Р) на радиус вписанной в него окружности (r), а затем разделить полученный результат на два: Sn=1/2P*r.

В основании – неправильный многоугольник

Схема нахождения его площади заключается в том, чтобы сначала разбить весь многоугольник на треугольники, вычислить площадь каждого из них по формуле: 1/2a*h (где а – основание треугольника, h – опущенная на это основание высота), сложить все результаты.

Площадь боковой поверхности пирамиды

Теперь рассчитаем площадь боковой поверхности пирамиды, т. е. сумму площадей всех ее боковых сторон. Здесь также возможны 2 варианта.

Пусть у нас имеется произвольная пирамида, т. е. такая, в основании которой – неправильный многоугольник. Тогда следует вычислить отдельно площадь каждой грани и сложить результаты. Так как боковыми сторонами пирамиды по определению могут быть только треугольники, то расчет идет по упомянутой выше формуле: S=1/2a*h. Пусть наша пирамида – правильная, т. е. в ее основании лежит правильный многоугольник, и проекция вершины пирамиды оказывается в его центре. Тогда для вычисления площади боковой поверхности (Sб) достаточно найти половину произведения периметра многоугольника-основания (Р) на высоту (h) боковой стороны (одинаковую для всех граней): Sб=1/2 Р*h. Периметр многоугольника определяется сложением длин всех его сторон.

Полная площадь поверхности правильной пирамиды найдется суммированием площади ее основания с площадью всей боковой поверхности.

Для примера вычислим алгебраически площади поверхности нескольких пирамид.

Площадь поверхности треугольной пирамиды

В основании такой пирамиды – треугольник. По формуле Sо=1/2a*h находим площадь основания. Эту же формулу применяем для нахождения площади каждой грани пирамиды, также имеющей треугольную форму, и получаем 3 площади: S1, S2 и S3. Площадь боковой поверхности пирамиды является суммой всех площадей: Sб= S1+ S2+ S3. Сложив площади боковых сторон и основания, получим полную площадь поверхности искомой пирамиды: Sп= Sо+ Sб.

Площадь поверхности четырехугольной пирамиды

Площадь боковой поверхности — это сумма 4-ех слагаемых: Sб= S1+ S2+ S3+ S4, каждое из которых вычислено по формуле площади треугольника. А площадь основания придется искать, в зависимости от формы четырехугольника — правильного или неправильного. Площадь полной поверхности пирамиды снова получится путем сложения площади основания и полной площади поверхности заданной пирамиды.

poiskvstavropole.ru