Центр окружности описанной около треугольника. Как найти центр описанной окружности


Центр описанной окружности | Треугольники

Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?

Теорема.

Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

 

tsentr okruzhnosti opisannoy okolo treugolnika

Дано: ∆ ABC,

окружность (O;R) — описанная около ∆ ABC.

Доказать:

O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.

Доказательство:

tsentr opisannoy okruzhnostiСоединим отрезками точки O и A, O и C.

OA=OB (как радиусы), следовательно, треугольник AOB — равнобедренный с основанием AC (по определению).

 

tsentr opisannoy okruzhnosti dlya treugolnikaПо свойству равнобедренного треугольника, высота и медиана, проведенные к основанию AC, совпадают):

    \[OF \bot AC,AF = CF.\]

Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

 

tsentr opisannoy okolo treugolnika okruzhnostiАналогично доказывается, что точка O лежит на серединном перпендикуляре к стороне AB.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.

Что и требовалось доказать.

Замечание.

Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

www.treugolniki.ru

Как найти центр описанной окружности

Иногда около выпуклого многоугольника можно начертить окружность таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности, найти эту точку, как правило, не очень трудно.

Вам понадобится

  • Линейка, карандаш, транспортир или угольник, циркуль.

Инструкция

  • Если многоугольник, около которого нужно описать окружность, начерчен на бумаге, для нахождения центра круга достаточно линейки, карандаша и транспортира либо угольника. Измерьте длину любой из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С помощью угольника или транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.
  • Проделайте эту же операцию с любой другой стороной многоугольника. Пересечение двух построенных отрезков и будет искомой точкой. Это вытекает из основного свойства описанной окружности - ее центр в выпуклом многоугольнике с любым числом сторон всегда лежит в точке пересечения серединных перпендикуляров, проведенных к этим сторонам.
  • Для правильных многоугольников определение центра вписанной окружности может быть намного проще. Например, если это квадрат, то начертите две диагонали - их пересечение и будет центром вписанной окружности. В правильном многоугольнике с любым четным числом сторон достаточно соединить вспомогательными отрезками две пары лежащих друг напротив друга углов - центр описанной окружности должен совпадать с точкой их пересечения. В прямоугольном треугольнике для решения задачи просто определите середину самой длинной стороны фигуры - гипотенузы.
  • Если из условий неизвестно, можно ли в принципе начертить описанную окружность для данного многоугольника, после определения предполагаемой точки центра любым из описанных способов вы можете это выяснить. Отложите на циркуле расстояние между найденной точкой и любой из вершин, установите циркуль в предполагаемый центр окружности и начертите круг - каждая вершина должна лежать на этой окружности. Если это не так, значит, не выполняется одно из основных свойств и описать окружность около данного многоугольника нельзя.

completerepair.ru

Центр окружности описанной около треугольника

Решение Рассмотрим треугольник ABC с прямым углом B. Отметим на серединах катетов AB и BC точки K и M соответственно. Поскольку центр описанной окружности прямоугольного треугольника находится на середине гипотенузы, то отрезки OK и OM являются средними линиями треугольника ABC. Так как R=5 см, то гипотенуза

AC=2R=10 см

Поскольку \angle A=30^{\circ}, то катет, лежащий против этого угла, равен половине гипотенузы, т.е.

BC=5 см

тогда по теореме Пифагора

AB=\sqrt{AC^2 -BC^2 } =\sqrt{100-25} =5\sqrt{3} см

Следовательно, из свойств средней линии

    \[OK=\frac{1}{2} BC=2,5\ cm,\]

а

    \[OM=\frac{1}{2} AB=\frac{5\sqrt{3} }{2} \ cm\]

ru.solverbook.com

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Планиметрия

Описанная окружность центр радиус серединный перпендикуляр свойства теорема синусов

Серединный перпендикуляр к отрезку

      Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Серединный перпендикуляр свойства

Рис.1

      Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

      Доказательство. Рассмотрим произвольную точку   D,   лежащую на серединном перпендикуляре к отрезку   AB   (рис.2), и докажем, что треугольники   ADC   и   BDC   равны.

Серединный перпендикуляр свойства

Рис.2

      Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты   AC   и   BC   равны, а катет   DC   является общим. Из равенства треугольников   ADC   и   BDC   вытекает равенство отрезков   AD   и   DB.   Теорема 1 доказана.

      Теорема 2 (Обратная  к теореме 1). Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

      Доказательство. Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка   E   находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок   EA   пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой   D.

Серединный перпендикуляр свойства

Рис.3

      Докажем, что отрезок   AE   длиннее отрезка   EB.   Действительно,

Серединный перпендикуляр свойстваСерединный перпендикуляр свойства

      Таким образом, в случае, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединный перпендикуляр свойства

Рис.4

      Теперь рассмотрим случай, когда точки   E   и   A   лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок   EB   длиннее отрезка   AE.   Действительно,

Серединный перпендикуляр свойстваСерединный перпендикуляр свойства

      Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

      Определение 2. Окружностью, описанной около треугольника, называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником.

Описанная около треугольника окружность треугольник вписанный в окружность

Рис.5

Свойства описанной около треугольника окружности. Теорема синусов

ФигураРисунокСвойство
Серединные перпендикулярык сторонам треугольникаСерединный перпендикуляр свойстваВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.Посмотреть доказательство
Окружность, описанная около треугольникаОписанная около треугольника окружность треугольник вписанный в окружностьОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОписанная около прямоугольного треугольника окружностьЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОписанная около треугольника окружность центр радиус свойстваЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовТеорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Теорема синусов,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольникаФормула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружностиФормула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

Формула для радиуса описанной окружности

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Серединные перпендикуляры к сторонам треугольника
Серединный перпендикуляр свойства

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Посмотреть доказательство

Окружность, описанная около треугольника
Описанная около треугольника окружность треугольник вписанный в окружность

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Посмотреть доказательство

Центр описанной около остроугольного треугольника окружности
Описанная около треугольника окружность треугольник вписанный в окружность

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности
Описанная около прямоугольного треугольника окружность

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Посмотреть доказательство

Центр описанной около тупоугольного треугольника окружности
Описанная около треугольника окружность центр радиус свойства

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов
Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Теорема синусов,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольника
Формула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружности
Формула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

Формула для радиуса описанной окружности

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Доказательства теорем о свойствах описанной около треугольника окружности

      Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

      Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам   AC   и   AB   треугольника   ABC,   и обозначим точку их пересечения буквой   O   (рис. 6).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.6

      Поскольку точка   O   лежит на серединном перпендикуляре к отрезку   AC,   то в силу теоремы 1 справедливо равенство:

CO = AO .

      Поскольку точка O лежит на серединном перпендикуляре к отрезку   AB,   то в силу теоремы 1 справедливо равенство:

AO = BO .

      Следовательно, справедливо равенство:

CO = BO ,

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку   BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

      Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

      Доказательство. Рассмотрим точку   O,   в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника   ABC   (рис. 6).

      При доказательстве теоремы 3 было получено равенство:

AO = OB = OC ,

из которого вытекает, что окружность с центром в точке   O   и радиусами   OA,   OB,   OC   проходит через все три вершины треугольника   ABC,   что и требовалось доказать.

      Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)

Теорема синусов

Рис.7

справедливы равенства:

Теорема синусов.

      Доказательство. Докажем сначала, что длина хорды окружности радиуса   R хорды окружности радиуса   R,   на которую опирается вписанный угол величины   φ ,   вычисляется по формуле:

      Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.8

      Угол   MPN,   как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.

      Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

      Формула (1) доказана.

      Из формулы (1) для вписанного треугольника   ABC   получаем (рис.7):

Теорема синусов доказательствоТеорема синусов доказательство

      Теорема синусов доказана.

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Все что нужно знать об окружности

Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

Окружностью называется множество точек, расположенных на одинаковом  расстоянии от данной точки, которая называется центром окружности.

Для любой точки L, лежащей на окружности выполняется равенство OL=R ( Длина отрезка OL равна радиусу окружности.

Отрезок, соединяющий две точки окружности называется хордой.

Хорда, проходящая через центр окружности называется диаметром окружности (D). D=2R

Длина окружности:

C=2{pi}R

Площадь круга:

S={pi}R^2

Дуга окружности:

Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда  CD стягивает две дуги: CMD и CLD. Равные хорды стягивают равные дуги.

Угол между двумя радиусами называется центральным углом:

Чтобы найти длину дуги CD, составляем пропорцию:

а) угол alpha дан в градусах:

2{pi}R~~~~~360^{circ}

x~~~~~~~{alpha}^{circ}

Отсюда x={{pi}R{alpha}^{circ}}/{180^{circ}}

б) угол alpha дан в радианах:

2{pi}R~~~~~2{pi}

x~~~~~~~{alpha}

Отсюда x={alpha}R

Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:

Если  хорды AB и CDокружности пересекаются в точке M, то произведения отрезков хорд, на которые они делятся точкой M равны между собой:

AN*NB=CN*ND

Касательная к окружности.

Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

Касательная к окружности перпендикулярна радиусу, проведенному к  точке касания.

Если из данной точки  проведены к окружности две касательные, то отрезки касательных  равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:

AC=CB

Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной  равен произведению  всего отрезка секущей на его внешнюю часть:

AC^2=CD*BC

Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:

AC*BC=EC*DC

Углы в окружности.

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

COD=CD={alpha}^{circ}

 

Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом.  Вписанный угол измеряется половиной дуги, на которую он опирается:

AOB=2ADB

Вписанный угол, опирающийся на диаметр, прямой:

CBD=CED=CAD=90^{circ}

Вписанные углы, опирающиеся на одну дугу, равны:

ADB=AEB=AFB

 

Вписанные углы, опирающиеся на одну хорду равны или их сумма равна 180^{circ}

ADB+AKB=180^{circ}

ADB=AEB=AFB

Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:

Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

DMC=ADM+DAM=1/2( ⌣ DmC+AlB)

Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.

M=CBD-ACB= 1/2( ⌣ DmC-AlB)

 Вписанная окружность.

Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

Не во всякий многоугольник можно вписать окружность.

Площадь многоугольника, в который вписана окружность можно найти по формуле

S=pr,

здесь p- полупериметр многоугольника, r - радиус вписанной окружности.

Отсюда радиус вписанной окружности равен r=S/p

Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

AB+DC=AD+BC

В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.

Радиус вписанной окружности равен r=S/p. Здесь p={a+b+c}/2

Описанная окружность.

Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180^{circ}.

A+∠C=∠B+∠D=180^{circ}

Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

Радиус описанной окружности вычисляется по формулам:

R=a/{2sinA}=b/{2sinB}=c/{2sinC}

R={abc}/{4S}

Где a,~~b,~~c - длины сторон треугольника, S - его площадь.

Теорема Птолемея

Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:

AC*BD=AB*CD+BC*AD

ege-ok.ru

Как найти центр окружности с помощью линейки?

Ежели "кусок пластмассы" ровный, то его углы прямые, а значит перпендикуляр построить можно, а остальное дело техники. Будем исходить из того, что: 1 Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы, т. е. гипотенуза равна диаметру 2 Все диаметры пересекаются в центре окружности <img src="//otvet.imgsmail.ru/download/2e4a608630ba5c30e2da2dabf8558ad1_i-185.jpg" >

по касательным (если провести 2 касательных и найти перпендикуляры пересечение перпендикуляров и будет центр окружности)

Радиус описанной окружности лежит на пересечении медиан треугольника. Берешь любые три точки на окружности, стоишь по ним треугольник, далее проводишь медианы треугольника, их пересечение будет центром окружности. А еще спроси у предыдущих ответчиков: "Как построить перпендикуляр ТОЛЬКО с помощью линейки? "

ну точно не найдёшь...

Чертишь треугольник, чтоб окружность была вписана в него. Из вершин треугольника проводишь линии к точкам пересечения сторон треугольника с окружностью. Там где линии пересекутся и будет то, что Вы ищете. Наверное. С 50-летием космонавтики!

touch.otvet.mail.ru

Все формулы для радиуса описанной окружности

радиус описанной окружности треугольника

 

a , b , c blue    -  стороны треугольника

s12 black  - полупериметр

s (abc)2

O black  - центр окружности

 

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

 

 

радиус описанной окружности равностороннего треугольника

 

сторона - сторона треугольника

высота - высота

радиус - радиус описанной окружности

 

 

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

 

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

 

 

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

 

a, b - стороны треугольника

 

 

 

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

 

 

 

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

 

a, b - катеты прямоугольного треугольника

c - гипотенуза

 

 

 

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

 

 

 

 

Радиус описанной окружности трапеции

a - боковые стороны трапеции

c - нижнее основание

b - верхнее основание

d - диагональ

p - полупериметр треугольника DBC

p = (a+d+c)/2

 

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

 

 

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

 

 

a - сторона квадрата

d - диагональ

 

 

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

 

 

 

 

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

 

 

a, b - стороны прямоугольника

d - диагональ

 

 

 

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

 

 

 

 

Радиус описанной окружности правильного многоугольника

 

a - сторона многоугольника

N - количество сторон многоугольника

 

 

 

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

 

 

 

 

 

 

a - сторона шестиугольника

d - диагональ шестиугольника

 

 

 

Радиус описанной окружности правильного шестиугольника (R):

 

Радиус описанной окружности

Наверх

© 2011-2018   Все права защищены.

При использовании материалов данного сайта обязательно указывать ссылку на источник.

www-formula.ru