2. Исследование функции на четность и нечетность. Как найти четность и нечетность функции


Четные и нечетные функции

Определение.

Функция называетсячетной, если она не изменяет своего значения при изменении знака аргумента, т.е..

Например, ;;– четные функции.

График четной функции расположен симметрично относительно оси (рис.1.4).

Рис. 1.4

Определение.

Функция называетсянечетной, если при изменении знака аргумента знак функции меняется на противоположный, а числовое значение её сохраняется, т.е..

Например, ;– нечетные функции.

График нечетной функции расположен симметрично относительно начала координат (рис.1.5).

Рис. 1.5

Функция может быть ни четной. ни нечетной, и в этом случае её называют функцией общего вида.

Например, ;;.

Графики таких функций не симметричны ни относительно оси , ни относительно начала координат.

Периодические функции

Определение.

Функция называется периодической, если существует такое положительное число, чтов области определения функции.

Наименьшее из положительных чисел Т, удовлетворяющих условию определения, называетсяпериодомфункции.

Например, функции ,являются периодическими с периодом.

Нули функции

Определение.

Значение аргумента, при котором функция обращается в нуль, , называетсянулем функции.

Например, нулями функции являются значенияи.

Монотонные функции

Определение.

Функция называется возрастающей(убывающей) в некоторой области изменения аргумента, еслибольшемузначению аргумента соответствуетбольшее(меньшее) значение функции (рис.1.6, 1.7).

Рис. 1.6 Рис. 1.7

Определение.

Если функция в некоторой области изменения аргумента является только возрастающей или только убывающей, то функция называется монотонной.

Ограниченные функции

Определение.

Функция называетсяограниченнойна множествеХ, если существует такое число, что для всехвыполняется неравенство.

Например, функции и– ограниченные функции, т.к.идля.

График ограниченной функции лежит между прямыми и(рис.1.8).

Рис. 1.8

УПРАЖНЕНИЯ

  1. Найти область определения следующих функций:

1) ; Ответ:;

2) ; Ответ:;

3) ; Ответ:;

4) ; Ответ:.

  1. Найти множество значений функции:

1) ; Ответ:;

2) ; Ответ:;

3) ; Ответ:.

  1. Найти ,,,, если.

Ответ: ;;;.

  1. Пусть и. Найтии.

Ответ: ;.

  1. Установить чётность или нечётность функции:

1) ; Ответ: чётная;

2) ; Ответ: чётная;

3) ; Ответ: общего вида;

4) ; Ответ: нечётная.

  1. Найти основные периоды функций:

1) ; Ответ:;

2) ; Ответ:;

3) ; Ответ:.

  1. Введя промежуточные аргументы, представить данную функцию, как суперпозицию других функций:

1) ; Ответ:;;;

2) ; Ответ:;;;;.

  1. Для данных функций найти явные обратные:

1) ; Ответ:;

2) ; Ответ:;

3) ; Ответ:.

studfiles.net

Четные и нечетные функции

Разделы: Математика, Конкурс «Презентация к уроку»

Презентация к уроку

Загрузить презентацию (10,8 МБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:1.Алгебра9класс А.Г Мордкович. Учебник. 2.Алгебра 9класс А.Г Мордкович. Задачник. 3.Алгебра 9 класс. Задания для обучения и развития учащихся.  Беленкова Е.Ю. Лебединцева Е.А

 ХОД УРОКА

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17  (Задачник 9кл. А.Г. Мордкович).

а) у = f(х), f(х) =

б) f (–2) = –3; f (0) = –1; f(5) = 69;

в)  1. D(f) = [– 2; + ∞) 2. Е(f) = [– 3; + ∞) 3. f(х) = 0 при х ~ 0,4 4. f(х) >0 при х > 0,4 ;    f(х) < 0 при – 2 < х < 0,4. 5. Функция возрастает при х €  [– 2; + ∞) 6. Функция ограничена снизу. 7. унаим = – 3, унаиб не существует 8. Функция непрерывна.

(Вы использовали алгоритм исследования функции?)  Слайд.

2. Таблицу, которую вам  задавалась, проверим по слайду.

Заполните таблицу

Функция

Область определения

Нули функции

Промежутки знакопостоянства

Координаты точек пересечения графика с Оу

у > 0

у < 0

х ≠ –3

х = –5, х = 2

х € (–5;3) U U (2; ∞ )

х € (–∞;–5) U U (–3;2 )

( 0;)

х ∞ –5, х ≠ 2

х = –3

х € (–5;3) U U (2; ∞)

х € (–∞;–5) U U (–3;2 )

( 0;)

х ≠ –5, х ≠ 2

нет

х € (–∞; –5) U U (2; ∞)

х € (–5; 2)

( 0;)

3. Актуализация знаний

– Даны функции. – Указать область определения для каждой функции. – Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2. – Для каких из данных функций в области определения выполняются равенства f(– х) = f(х), f(– х) = – f(х)? (полученные данные занести в таблицу) Слайд

 

D (f)

f(1) и f(– 1) f(2) и f(– 2) графики f(– х) = –f(х) f(– х) = f(х)
1. f(х) =

R

2 и 2

Г

 

 

+

2. f(х) = х3

R

1 и 1

8 и – 8

А

+

 

3. f(х) = | х |

R

1 и – 1

2 и 2

Б

 

+

4. f(х) = 2х – 3

R

– 1 и – 5

1 и – 7

Е

 

 

5. f(х) =

х ≠ 0

6 и – 6

3 и – 3

В

+

 

6. f(х)= х > –1

 и 0

и не опред.

З

 

 

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков. Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х), заданная на множестве Х называется чётной, если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х), заданная на множестве Х называется нечётной, если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»? Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему? Для любой функции вида у = хn, где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.   – Функции вида у =  и у = 2х – 3 не являются ни чётным , ни нечётными, т.к. не выполняются равенства f(– х) = – f(х), f(– х) = f(х)

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях  1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х, и при – х.

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

Примеры:

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а [0; ∞), (2;–2], [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных? – Если же D(f) – несимметричное множество, то функция какая? – Таким образом, если функция у = f(х) – чётная или нечётная, то её область определения D(f) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна? – Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное. – Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f(– х).

3. Сравнить f(– х).и  f(х):

  • если  f(– х).= f(х), то функция чётная;
  • если  f(– х).= – f(х), то функция нечётная;
  • если   f(– х) ≠ f(х) и  f(– х) ≠ –f(х), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х5 +; б) у = ; в) у= .

Решение.

а) h(х) = х5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х)5 + – х5 –= – (х5 +),

3) h(– х) = – h (х) => функция  h(х)  = х5 +  нечётная.

б) у = ,

у = f(х),     D(f) = (–∞; –9)? (–9; +∞),  несимметричное множество, значит функция ни чётная, ни нечётная.

в) f(х) = ,   у = f (х), 

1) D(f) = (–∞; 3] ≠ [3; +∞), симметричное множество.

2)f (– х) == ;

3)  f (– х) = f (х)  =>  функция f(х) =     чётная.

Итак, по аналитической записи можно определить четность функции? Но кроме аналитического способа задания функции есть другие. Какие? Можно ли по графику функции выявить её четность? Давайте вернёмся к заданию, которое мы выполняли в начале урока, найдём соответствие между аналитически заданными функциями и их графиками  (изображёнными на доске), что вы находите примечательного в расположении графиков чётных функций? Нечётных?

Слайд.

Вывод:

  1. График чётной функции симметричен относительно оси у.
  2. График нечётной функции симметричен относительно начала координат.

– Верны ли обратные утверждения?

  1. Если график функции у = f(х) симметричен относительно оси ординат, то у = f(х) – чётная функция.
  2. Если график функции у = f(х) симметричен относительно начала координат, то у = f(х) – нечётная функция.

Доказательство данных утверждений разобрать дома самостоятельно по учебнику и записать в тетрадь.

– Какова же значимость свойства четности или нечётности функции? Зачем нужно изучать свойство чётности функций .В план свойств функций свойство чётности вы поставили бы на какое порядковое место

5. Первичное закрепление

Самостоятельная работа

Вариант 1

1. Является ли симметричным заданное множество: а) [–7;7]; б) (∞; –2),  (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0],  (0; 7) ?

2. Исследуйте на чётность функцию: а);      б) у = х·  (5 – х2). 2. Исследуйте на чётность функцию:

а) у = х2 · (2х – х3),     б)  у =

3. На рис. построен график у = f(х), для всех х, удовлетворяющих условию х? 0. Постройте график функции у = f(х), если у = f(х) – чётная функция.

 

3. На рис. построен график у = f(х), для всех х, удовлетворяющих условию х ? 0. Постройте график функции у = f(х), если у = f(х) – нечётная функция.

 

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции   g(х) = х(х + 1)(х + 3)(х – 7). Найдите значение функции h(х) =  при х = 3.

7. Подведение итогов

Приложения

xn--i1abbnckbmcl9fb.xn--p1ai

Четность-нечетность функции. Период функции

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3. Назначая любые значения независимой переменной x, можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y. Например, если x=-0,5, то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5.

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3, можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x. Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy.

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0).

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x).

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x), в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x), называется периодической функцией с периодом T \neq 0.

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T.

Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty )

Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1} ) \cup (x_{2}; x_{3} )

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A, для которого выполняется неравенство f(x) \geq A для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x.

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B, для которого выполняется неравенство f(x) \neq B для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1].

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0, для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X.

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1.

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) > y(x_{2}).

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) < y(x_{2}).

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0, то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0}), и для них тогда будет выполняться неравенство f(x) > f(x_{0}). y_{min} - обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0}), и для них тогда будет выполняется неравенство f(x) < f(x^{0}). y_{max} - обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f'(x)=0 тогда, когда у функции f(x), что дифференцируема в точке x_{0}, появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0}.

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f'(x);
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку [a; b];
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции, а большее — наибольшим.

academyege.ru

2. Исследование функции на четность и нечетность.

Функция называется четной (нечетной), если для любогои выполняется равенство

.

График четной функции симметричен относительно оси .

График нечетной функции симметричен относительно начала координат.

Пример 6.2. Исследовать на четность или нечетность функции

1) ; 2); 3).

Решение.

1) Функция определена при . Найдем.

, т.е. . Значит, данная функция является четной.

2) Функция определена при

, т.е. . Таким образом, данная функция нечетная.

3) функция определена для , т.е. для

, . Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

3. Исследование функции на монотонность.

Функция называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

Функции возрастающие (убывающие) на некотором интервале называются монотонными.

Если функция дифференцируема на интервалеи имеет положительную (отрицательную) производную, то функциявозрастает (убывает) на этом интервале.

Пример 6.3. Найти интервалы монотонности функций

1) ; 3).

Решение.

1) Данная функция определена на всей числовой оси. Найдем производную .

Производная равна нулю, если и. Область определения – числовая ось, разбивается точками,на интервалы. Определим знак производной в каждом интервале.

В интервале производная отрицательна, функция на этом интервале убывает.

В интервале производная положительна, следовательно, функция на этом интервале возрастает.

2) Данная функция определена, если или

.

Определяем знак квадратного трехчлена в каждом интервале.

Таким образом, область определения функции

.

Найдем производную ,, если, т.е., но. Определим знак производной в интервалах.

В интервале производная отрицательна, следовательно, функция убывает на интервале. В интервалепроизводная положительна, функция возрастает на интервале.

4. Исследование функции на экстремум.

Точка называется точкой максимума (минимума) функции, если существует такая окрестность точки, что для всехиз этой окрестности выполняется неравенство.

Точки максимума и минимума функции называются точками экстремума.

Если функция в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

Точки, в которых производная равна нулю или не существует называются критическими.

5. Достаточные условия существования экстремума.

Правило 1. Если при переходе (слева направо) через критическую точку производнаяменяет знак с «+» на «–», то в точкефункцияимеет максимум; если с «–» на «+», то минимум; еслине меняет знак, то экстремума нет.

Правило 2. Пусть в точке первая производная функцииравна нулю, а вторая производная существует и отлична от нуля. Если, то– точка максимума, если, то– точка минимума функции.

Пример 6.4. Исследовать на максимум и минимум функции:

1) ; 2); 3);

4) .

Решение.

1) Функция определена и непрерывна на интервале .

Найдем производную и решим уравнение, т.е..Отсюда– критические точки.

Определим знак производной в интервалах ,.

При переходе через точки ипроизводная меняет знак с «–» на «+», поэтому по правилу 1– точки минимума.

При переходе через точку производная меняет знак с «+» на «–», поэтому– точка максимума.

, .

2) Функция определена и непрерывна в интервале . Найдем производную.

Решив уравнение , найдеми– критические точки. Если знаменатель, т.е., то производная не существует. Итак,– третья критическая точка. Определим знак производной в интервалах.

Следовательно, функция имеет минимум в точке , максимум в точкахи.

.

3) Функция определена и непрерывна, если , т.е. при.

Найдем производную

.

Найдем критические точки:

Окрестности точек не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точкии.

.

4) Функция определена и непрерывна на интервале . Используем правило 2. Найдем производную.

Найдем критические точки:

Найдем вторую производную и определим ее знак в точках

.

В точках функция имеет минимум.

.

В точках функция имеет максимум.

studfiles.net

Четные и нечетные функции: графики и свойства

 

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Рассмотри подробнее свойство четности.

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

График четной функции

Если построить график четной функции он будет симметричен относительно оси Оу.

Например, функция y=x^2 является четной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Следовательно, f(x) = f(-x). Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график функции y=x^2.

На рисунке видно, что график симметричен относительно оси Оу.

График нечетной функции

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О – начала координат. Например, функция y=x^3 является нечетной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Следовательно, f(x) = -f(x). Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график функции y=x^3.

На рисунке наглядно представлено, что нечетная функция y=x^3 симметрична относительно начала координат.

Нужна помощь в учебе?

Предыдущая тема: Сумма бесконечной геометрической прогрессии при |q|Следующая тема:&nbsp&nbsp&nbspФункция y=x^n: линейная функция, квадратичная, кубическая и y=1/x

Все неприличные комментарии будут удаляться.

www.nado5.ru

Четные и нечетные функции

Четные функции

Определение 1

Функцию $y=f(x)$, которая имеет своей областью определения множество $X$, будем называть четной, если для всех точек из множества $X$ будет выполняться

\[f\left(x\right)=f(-x)\]

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будет совпадать, то график этих функции будет подчиняться закону осевой симметрии по отношению к оси ординат (рис. 1).

Рисунок 1.

Для исследования функции на четность необходимо в его аналитической записи заменить переменную $x$ на переменную $-x$, произвести, при необходимости элементарные преобразования, и проверить условие определения 1.

Нечетные функции

Определение 2

Функцию $y=f(x)$, которая имеет своей областью определения множество $X$, будем называть нечетной, если для всех точек из множества $X$ будет выполняться

\[f\left(-x\right)=-f(x)\]

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будут также совпадать по модулю и отрицательны по знакам, то график этих функции будет подчиняться закону центральной симметрии по отношению к началу координат (рис. 2).

Рисунок 2.

Для исследования функции на нечетность необходимо в его аналитической записи заменить переменную $x$ на переменную $-x$, произвести, при необходимости элементарные преобразования, и проверить условие определения 2.

Функция общего вида

Определение 3

Функцию $y=f(x)$, которая имеет своей областью определения множество $X$, будем называть функцией общего вида, если она не будет ни четной, ни нечетной.

Для того чтобы понять, что данная функция является функцией общего вида, необходимо в его аналитической записи заменить переменную $x$ на переменную $--x$, произвести, при необходимости элементарные преобразования, и проверить невыполнение условий определений 1 и 2.

Функция общего вида никогда не будет симметрична оси ординат и началу координат. Пример функции общего вида изображен на рисунке 3.

Рисунок 3.

Пример задачи

Пример 1

Исследовать функцию на четность и нечетность и построить их графики.

а) $f(x)=x^2+3$

б) $f(x)=\frac{x^2+4}{x}$

в) $f\left(x\right)=sinx+cosx$

Решение.

а) $f(x)=x^2+3$

$f\left(-x\right)={(-x)}^2+3=x^2+3=f(x)$\textit{ }следовательно, $f(x)$ -- четная функция.

Изобразим её на графике:

Рисунок 4.

б) $f(x)=\frac{x^2+4}{x}$

$f\left(-x\right)=\frac{{\left(-x\right)}^2+4}{-x}=-\frac{x^2+4}{x}$ следовательно, $f(x)$ -- нечетная функция.

Изобразим её на графике:

Рисунок 5.

в) $f\left(x\right)=sinx+cosx$

$f\left(-x\right)={\sin \left(-x\right)\ }+{\cos \left(-x\right)\ }=cosx-sinx$ следовательно, $f\left(x\right)$ -- функция общего вида.

Изобразим её на графике:

Рисунок 6.

spravochnick.ru

Четность функции

Четность и нечетность функции являются одним из основных ее свойств, и исследование функции на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,

Из приведенного определения следует условие, необходимое для области определения подобной функции, а именно, симметричность относительно точки О , являющейся началом координат, поскольку если некоторая точка b содержится в области определения четной функции, то соответствующая точка - b тоже лежит в этой области. Из вышесказанного, таким образом, вытекает вывод: четная функция имеет симметричный по отношению к оси ординат (Oy) вид.

Как на практике определить четность функции?

Пусть функциональная зависимость задается с помощью формулы h(x)=11^x+11^(-x). Следуя алгоритму, вытекающему непосредственно из определения, исследуем прежде всего ее область определения. Очевидно, что она определена для всех значений аргумента, то есть первое условие выполнено.

Следующим шагом подставим вместо аргумента (x) его противоположное значение (-x).Получаем :h(-x) = 11^(-x) + 11^x. Поскольку сложение удовлетворяет коммутативному (переместительному) закону, то очевидно, h(-x) = h(x) и заданная функциональная зависимость – четная.

Проверим четность функции h(x)=11^x-11^(-x). Следуя тому же алгоритму, получаем, что h(-x) = 11^(-x) -11^x. Вынеся минус, в итоге, имеем h(-x)=-( 11^x-11^(-x))=- h(x). Следовательно, h(x) – нечетная.

Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

Четные функции обладают рядом интересных свойств:

  • в результате сложения подобных функций получают четную;
  • в результате вычитания таких функций получают четную;
  • функция, обратная четной, также четная;
  • в результате умножения двух таких функций получают четную;
  • в результате умножения нечетной и четной функций получают нечетную;
  • в результате деления нечетной и четной функций получают нечетную;
  • производная такой функции – нечетная;
  • если возвести нечетную функцию в квадрат , получим четную.

Четность функции можно использовать при решении уравнений.

Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. Один из них подлежит проверке.

Это же свойство функции успешно применяют для решения нестандартных задач с параметром.

Например, есть ли какое-либо значение параметра a, при котором уравнение 2x^6-x^4-ax^2=1 будет иметь три корня?

Если учесть, что переменная входит в уравнение в четных степенях, то понятно, что замена х на – х заданное уравнение не изменит. Отсюда следует, что если некоторое число является его корнем, то им же является и противоположное число. Вывод очевиден: корни уравнения, отличные от нуля, входят в множество его решений «парами».

Ясно, что само число 0 корнем уравнения не является, то есть число корней подобного уравнения может быть только четным и, естественно, ни при каком значении параметра оно не может иметь трех корней.

А вот число корней уравнения 2^x+ 2^(-x)=ax^4+2x^2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

fb.ru