Как найти наибольшее значение функции по уравнению. Как найти наибольший


НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ, алгоритм как найти НОД

Наибольший общий делитель чисел – это наибольшее число, на которое делятся все заданные числа.

Алгоритм поиска НОД

Вычисление НОД похоже на поиск НОК. Чтобы найти наибольший общий делитель, нужно использовать следующий алгоритм:

  1. Разложить все числа на простые множители, используя признаки делимости чисел.
  2. Найти совпадающие множители во всех числах и выписать их.
  3. Перемножить совпадающие множители.

Если среди множителей чисел не были найдены одинаковые, числа являются взаимно простыми.

Примеры поиска наибольшего общего делителя

Рассмотрим, как найти НОД с помощью алгоритма на нескольких примерах.

Пример 1:

Найдите наибольший общий делитель чисел 420 и 990.

Решение:

Разложим оба числа на простые множители:

Получили, что:

420 = 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 7

990 = 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 11

Выпишем все совпадающие множители для обоих чисел и перемножим их:

НОД = 2 ⋅ 3 ⋅ 5 = 30

Ответ: 30

Пример 2:

Найдите наибольший общий делитель чисел 588 и 1820.

Решение:

Разложим оба числа на простые множители:

Получили, что:

588 = 2 ⋅ 2 ⋅ 3 ⋅ 7 ⋅ 7

1820 = 2 ⋅ 2 ⋅ 5 ⋅ 7 ⋅ 13

Выпишем все совпадающие множители для обоих чисел и перемножим их:

НОД = 2 ⋅ 2 ⋅ 7 = 28

Ответ: 28

Пример 3:

Найдите наибольший общий делитель чисел 1000 и 3267.

Решение:

Разложим оба числа на простые множители:

Получили, что:

1000 = 2 ⋅ 2 ⋅ 2 ⋅ 5 ⋅ 5 ⋅ 5

3267 = 3 ⋅ 3 ⋅ 3 ⋅ 11 ⋅ 11

Совпадающих множителей у этих 2 чисел нет, поэтому они являются взаимно простыми, то есть

Ответ: 1

worksbase.ru

Как найти наибольший общий делитель (НОД)

Рассмотрим два способа нахождения наибольшего общего делителя.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наибольшего общего делителя путём разложения данных чисел на простые множители.

Чтобы найти НОД нескольких чисел, достаточно, разложить их на простые множители и перемножить между собой те из них, которые являются общими для всех данных чисел.

Пример 1. Найдём НОД (84, 90).

Раскладываем числа 84 и 90 на простые множители:

Итак, мы подчеркнули все общие простые множители, осталось перемножить их между собой: 1 · 2 · 3 = 6.

Таким образом, НОД (84, 90) = 6.

Пример 2. Найдём НОД (15, 28).

Раскладываем 15 и 28 на простые множители:

Числа 15 и 28 являются взаимно простыми, так как их наибольший общий делитель – единица.

НОД (15, 28) = 1.

Алгоритм Евклида

Второй способ (иначе его называют способом Евклида) заключается в нахождении НОД путём последовательного деления.

Сначала мы рассмотрим этот способ в применении только к двум данным числам, а затем разберёмся в том, как его применять к трём и более числам.

Если большее из двух данных чисел делится на меньшее, то число, которое меньше и будет их наибольшим общим делителем.

Пример 1. Возьмём два числа 27 и 9. Так как 27 делится на 9 и 9 делится на 9, значит, 9 является общим делителем чисел 27 и 9. Этот делитель является в тоже время и наибольшим, потому что 9 не может делиться ни на какое число, большее 9. Следовательно, НОД (27, 9) = 9.

В остальных случаях, чтобы найти наибольший общий делитель двух чисел используется следующий порядок действий:

  1. Из двух данных чисел большее число делят на меньшее.
  2. Затем, меньшее число делят на остаток, получившийся от деления большего числа на меньшее.
  3. Далее, первый остаток делят на второй остаток, который получился от деления меньшего числа на первый остаток.
  4. Второй остаток делят на третий, который получился от деления первого остатка на второй и т. д.
  5. Таким образом деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель как раз и будет наибольшим общим делителем.

Пример 2. Найдём наибольший общий делитель чисел 140 и 96:

1) 140 : 96 = 1 (остаток 44)

2) 96 : 44 = 2 (остаток 8)

3) 44 : 8 = 5 (остаток 4)

4) 8 : 4 = 2

Последний делитель равен 4 – это значит, что НОД (140, 96) = 4.

Последовательное деление так же можно записывать столбиком:

Чтобы найти наибольший общий делитель трёх и более данных чисел, используем следующий порядок действий:

  1. Сперва находим наибольший общий делитель любых двух чисел из нескольких данных.
  2. Затем находим НОД найденного делителя и какого-нибудь третьего данного числа.
  3. Затем находим НОД последнего найденного делителя и четвёртого данного числа и так далее.

Пример 3. Найдём наибольший общий делитель чисел 140, 96 и 48. НОД чисел 140 и 96 мы уже нашли в предыдущем примере (это число 4). Осталось найти наибольший общий делитель числа 4 и третьего данного числа – 48:

1) 48 : 4 = 12

48 делится на 4 без остатка. Таким образом, НОД (140, 96, 48) = 4.

naobumium.info

Как найти наибольший общий делитель

Стр 1 из 4Следующая ⇒

Определение наибольшего общего делителя

Наибольший общий делитель (НОД) двух данных чисел a и b - это наибольшее число, на которое оба числа a и b делятся без остатка.

Кратко наибольший общий делитель чисел a и b записывают так: НОД (a; b).

Пример: НОД (12; 36) = 12.

Некоторые пары чисел, например числа 24 и 35, имеют в качестве наибольшего общего делителя единицу. Такие числа называют взаимно простыми числами.

Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1. Их НОД равен 1.

Натуральное число, которое имеет более двух делителей называется составным.

Как найти наибольший общий делитель

Первый способ:

Найти НОД 48 и 36.

  1. Разложить делители чисел на простые множители

  1. Подчёркиваем одинаковые простые множители в обоих числах.
  2. Находим произведение одинаковых простых множителей и записать ответ. НОД (36; 48) = 2 • 2 = 4

Второй способ:

Сначала разложить на простые множители оба числа.

48 = 2·2·2·2·3, 36 = 2·2·3·3.

Теперь из множителей, которые входят в разложение первого числа, вычеркнем все те, которые не входят в разложение второго числа. В нашем случае это две двойки.

48 = 2·2·2·2·3, 36 = 2·2·3·3.

Останутся множители 2, 2 и 3. Их произведение равно 12. Это число и будет являться наибольшим общим делителем чисел 48 и 36.

Эти правила можно распространить на случай с тремя, четырьмя и т.д. числами.

 

Общая схема нахождения наибольшего общего делителя

  1. Разложить числа на простые множители.
  2. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел.
  3. Посчитать произведение оставшихся множителей.

Наименьшее общее кратное (НОК)

Рассмотрим решение следующей задачи. Шаг мальчика составляет 75 см, а шаг девочки 60 см. Необходимо найти наименьшее расстояние, на котором они оба сделают по целому числу шагов.

Решение. Весь путь который пройдут ребята, должен делиться без остатка на 60 и на 70, так как они должны сделать каждый целое число шагов. Другими словами, в ответе должно быть число, кратное как 75 так и 60.

Сначала будем выписывать все кратные числа, для числа 75.

60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Теперь находим числа которые есть в обоих рядах. Общими кратными чисел будут числа, 300, 600, и т.д.

Самое наименьшее из них, это число 300. Оно в данном случае будет называться наименьшим общим кратным чисел 75 и 60.

Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

Кратко наименьшее общее кратное чисел a и b записывают так: НОК (a; b).

Пример: НОК (6, 8) = 24

Возвращаясь к условию задачи, наименьшее расстояние, на котором ребята сделают целое число шагов будет 300 см. Мальчик пройдет этот путь за 4 шага, а девочке потребуется сделать 5 шагов.

 

 

mykonspekts.ru

Наибольший общий делитель (НОД): определение, как найти, схема

 

Решим задачу. У нас есть  два типа печенья. Одни шоколадные, а другие простые. Шоколадных 48 штук, а простых 36. Необходимо составить из этого печенья максимально возможное число подарков, при этом надо использовать их все.

Для начала выпишем все делители каждого из этих двух чисел, так как оба эти числа должны делиться на количество подарков.

Получаем, 

  • 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
  • 36: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Найдем среди делителей общие, которые есть как у первого, так и у второго числа.

Общими делителями будут: 1, 2, 3, 4, 6, 12.

Наибольшим из всех общих делителей является число 12. Это число называют наибольшим общим делителем чисел 36 и 48.

Исходя из полученного результата, можем заключить, что из всего печенья можно составить 12 подарков. В одном таком подарке будет 4 шоколадных печенья и 3 обычных печенья.

Определение наибольшего общего делителя

  • Наибольшее натуральное число, на которое делятся без остатка два числа a и b, называют наибольшим общим делителем этих чисел.

Иногда для сокращения записи используют аббревиатуру НОД.

Некоторые пары чисел имеют в качестве наибольшего общего делителя единицу. Такие числа называют взаимно простыми числами. Например, числа 24 и 35. Имеют НОД =1.

Как найти наибольший общий делитель

Для того чтобы найти наибольший общий делитель не обязательно выписывать все делители данных чисел.

Можно поступить иначе. Сначала разложить на простые множители оба числа.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Теперь из множителей, которые входят в разложение первого числа, вычеркнем все те, которые  не входят в разложение второго числа. В нашем случае это две двойки.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Останутся множители 2, 2 и 3. Их произведение равно 12. Это число и будет являться наибольшим общим делителем чисел 48 и 36. 

Это правило можно распространить на случай с тремя, четырьмя и т.д. числами.

Общая схема нахождения наибольшего общего делителя

  • 1. Разложить числа на простые множители.
  • 2. Из множителей,  входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел.
  • 3. Посчитать произведение оставшихся множителей.

Нужна помощь в учебе?

Предыдущая тема: Простые и составные числа: разложение чисел на простые множители Следующая тема:&nbsp&nbsp&nbspНаименьшее общее кратное (НОК): определение, как найти, общая схема

Все неприличные комментарии будут удаляться.

www.nado5.ru

Что такое наибольший общий делитель двух чисел (НОД) и методика как его находить

Одной из задач, вызывающих проблему у современных школьников, привыкших к месту и не к месту использовать калькуляторы, встроенные в гаджеты, является нахождение наибольшего общего делителя (НОД) двух и более чисел.

Невозможно решить никакую математическую задачу, если неизвестно, о чём собственно спрашивают. Для этого нужно знать, что означает то или иное выражение, используемое в математике.

Общие понятия и определения

Необходимо знать:

  1. Если некое число можно использовать для подсчёта различных предметов, например, девять столбов, шестнадцать домов, то оно является натуральным. Самым маленьким из них будет единица.
  2. Когда натуральное число делится на другое натуральное число, то говорят, что меньшее число — это делитель большего.
  3. Если два и более различных числа делятся на некое число без остатка, то говорят, что последнее будет их общим делителем (ОД).
  4. Самый большой из ОД именуется наибольшим общим делителем (НОД).
  5. В таком случае, когда у числа есть только два натуральных делителя (оно само и единичка), оно называется простым. Самое маленькое среди них — двойка, к тому же она и единственное чётное в их ряду.
  6. В случае если у двух чисел максимальным общим делителем является единица, то они будут взаимно простыми.
  7. Число, у которого больше чем два делителя, именуется составным.
  8. Процесс когда находятся все простые множители, которые при умножении между собой дадут в произведении начальное значение в математике называют разложением на простые множители. Причём одинаковые множители в разложении могут встречаться неоднократно.

В математике приняты следующие записи:

  1. Делители Д (45) = (1;3;5;9;45).
  2. ОД (8;18) = (1;2).
  3. НОД (8;18) = 2.

Различные способы найти НОД

Проще всего ответить на вопрос как найти НОД в том случае, когда меньшее число является делителем большего. Оно и будет в подобном случае наибольшим общим делителем.

Например, НОД (15;45) = 15, НОД (48;24) = 24.

Но такие случаи в математике являются весьма редкими, поэтому для того, чтобы находить НОД используются более сложные приёмы, хотя проверять этот вариант перед началом работы все же весьма рекомендуется.

Способ разложения на простые сомножители

Если необходимо найти НОД двух или более различных чисел, достаточно разложить каждое из них на простые сомножители, а затем произвести процесс умножения тех из них, которые имеются в каждом из чисел.

Пример 1

Рассмотрим, как находить НОД 36 и 90:

  1. 36 = 1*2*2*3*3;
  2. 90 = 1*2*3*3*5;

НОД (36;90) = 1*2*3*3 = 18.

Теперь посмотрим как находить то же самое в случае трёх чисел, возьмём для примера 54; 162; 42.

Как разложить 36 мы уже знаем, разберёмся с остальными:

  1. 162 = 1*2*3*3*3*3;
  2. 42 = 1*2*3*7;

Таким образом, НОД (36;162;42) = 1*2*3 = 6.

Следует заметить, что единицу в разложении писать совершенно необязательно.

Рассмотрим способ, как просто раскладывать на простые множители, для этого слева запишем необходимую нам цифру, а справа станем писать простые делители.

Разделять колонки можно, как знаком деления, так и простой вертикальной чертой.

  1. 36 / 2 продолжим наш процесс деления;
  2. 18 / 2 далее;
  3. 9 / 3 и ещё раз;
  4. 3 / 3 сейчас совсем элементарно;
  5. 1 — результат готов.

Искомое 36 = 2*2*3*3.

Евклидов способ

Этот вариант известен человечеству ещё со времён древнегреческой цивилизации, он во многом проще, и приписывается великому математику Евклиду, хотя весьма похожие алгоритмы применялись и ранее. Этот способ заключается в использовании следующего алгоритма, мы делим большее число с остатком на меньшее. Затем наш делитель делим на остаток и продолжаем так действовать по кругу пока не произойдёт деление нацело. Последнее значение и окажется искомым наибольшим общим делителем.

Приведём пример использования данного алгоритма:

попробуем выяснить какой НОД у 816 и 252:

  1. 816 / 252 = 3 и остаток 60. Сейчас 252 разделим на 60;
  2. 252 / 60 = 4 в остатке на этот раз окажется 12. Продолжим наш круговой процесс, разделим шестьдесят на двенадцать;
  3. 60 / 12 = 5. Поскольку на сей раз никакого остатка мы не получили, то у нас готов результат, двенадцать будет искомым для нас значением.

Итак, по завершении нашего процесса мы получили НОД (816;252) = 12.

Действия при необходимости определения НОД если задано более двух значений

Мы уже разобрались, что делать в случае, когда имеется два различных числа, теперь научимся действовать, если их имеется 3 и более.

При всей кажущейся сложности, данная задача проблем у нас уже не вызовет. Сейчас мы выбираем два любые числа и определяем искомое для них значение. Следующим шагом отыскиваем НОД у полученного результата и третьего из заданных значений. Затем снова действуем по уже известному нам принципу для четвёртого пятого и так далее.

Заключение

Итак, при кажущейся большой сложности поставленной перед нами изначально задачи, на самом деле все просто, главное уметь выполнять безошибочно процесс делений и придерживаться любого из двух описанных выше алгоритмов.

Хотя оба способа и являются вполне приемлемыми, в общеобразовательной школе гораздо чаще применяется первый способ. Это связано с тем, что разложение на простые множители понадобится при изучении следующей учебной темы — определение наибольшего общего кратного (НОК). Но все же стоит ещё раз заметить — применение алгоритма Евклида ни в коей мере не может считаться ошибочным.

Видео

С помощью видео вы сможете узнать, как найти наибольший общий делитель.

liveposts.ru

Как найти наибольшее значение функции по уравнению

Есть ведь такое свойство,что медианы в равностороннем треугольнике в точке их пересечения O (что является центром треугольника), делятся в отношении 2:1 считая.

Наибольшее и наименьшее значение функции.

С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования. Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции — определения, иллюстрации.

Кратко остановимся на основных определениях.

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:»Всегда ли можно определить наибольшее (наименьшее) значение функции»? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На первом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на [1;6] . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале

На четвертом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале [1;6) наименьшее значение функции достигается в стационарной точке, а про наибольшее значение мы ничего сказать не можем. Если бы точка x=6 была частью интервала, тогда при этом значении функция принимала бы наибольшее значение. Этот пример изображен на рисунке №5.

На рисунке №6 наименьшее значение функции достигается в правой границе интервала (-3;2] , о наибольшем значении никаких выводов сделать нельзя.

В примере, представленном на седьмом рисунке, функция принимает наибольшее значение ( max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение ( min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке [a;b] .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

Находим область определения функции и проверяем, содержится ли в ней весь отрезок [a;b] . Находим все точки, в которых не существует первая производная и которые содержатся в отрезке [a;b] (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту. Определяем все стационарные точки, попадающие в отрезок [a;b] . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

на отрезке [1;4] ; на отрезке [-4;-1] .

Очевидно, производная функции существует во всех точках отрезков [1;4] и [-4;-1] .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

Проверяем, является ли интервал X подмножеством области определения функции.

Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

Дальнейшие действия зависят от интервала X.

Если интервал X имеет вид:

Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

(-3;1] (-3;2) [1;2)

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Очевидно, производная существует на всей области определения функции.

Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Как найти наибольшее значение функции по уравнению

Совет 1: Как найти наибольшее наименьшее значение функции

    Как найти наибольшее наименьшее значение функции Как по функции вычислить формулу Как строить графики функций в 2018 году
    чистый лист бумаги; ручка или карандаш; учебник по высшей математике.
    Наибольшее и наименьшее значение функции как указать наименьшее значение функции

Совет 2: Как определить наибольшее значение функции

Как найти наибольшее значение функции по уравнению

Совет 1: Как найти наибольшее наименьшее значение функции

    Как найти наибольшее наименьшее значение функции Как по функции вычислить формулу Как строить графики функций в 2018 году
    чистый лист бумаги; ручка или карандаш; учебник по высшей математике.
    Наибольшее и наименьшее значение функции как указать наименьшее значение функции

Совет 2: Как определить наибольшее значение функции

как найти наибольшее значение функции по уравнению

poiskvstavropole.ru

Как найти наибольший делитель числа, не равный самому числу?

для простых чисел-это само число потому что просто число делится на себя и 1.Для других чисел находите делитли начиная с минимальных-2.3.5....и найдете максимальное. ПРИМЕР: 144\2=72\2=36\2=18\2=9\3... 72 =Наибольший делитель1)21-72)39-13..3)108- 54..85-17....

найди наименьшее число, большее 1, на которое делится исходное и подели. вот и ответ. ________________________________________ достаточно перебирать простые числа, не превосходящие квадратного корня из исходного числа. если среди них нет делителя исходного числа, ответ 1

найди наименьшее число, большее 1, на которое делится исходное и подели. вот и ответ. ________________________________________ достаточно перебирать простые числа, не превосходящие квадратного корня из исходного числа. если среди них нет делителя исходного числа, ответ 1

touch.otvet.mail.ru