Урок математики. Тема: "Ось симметрии". Как провести ось симметрии фигуры


Оси симметрии. Фигуры, имеющие ось симметрии. Что такое вертикальная ось симметрии

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:

  • Зеркальная - наблюдается относительно одной или нескольких плоскостей. Также термин употребляется для обозначения типа симметрии, когда используется такое преобразование, как отражение.
  • Лучевая, радиальная или осевая - существует несколько вариантов в различных источниках, в общем смысле - симметрия относительно прямой. Может рассматриваться как частный случай вращательной разновидности.
  • Центральная - наблюдается симметричность относительно некой точки.

Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной, выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются оси симметрии фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и равносторонние треугольники. В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все правильные многоугольники, окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

Зеркальная симметрия в жизни называется билатеральной, она встречается наиболее часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.

Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая Пизанская башня чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.

fb.ru

Урок математики. Тема: "Ось симметрии"

Разделы: Математика

Цели:

  • образовательные:
    • дать представление о симметрии;
    • познакомить с основными видами симметрии на плоскости и в пространстве;
    • выработать прочные навыки построения симметричных фигур;
    • расширить представления об известных фигурах, познакомив со свойствами, связанных с симметрией;
    • показать возможности использования симметрии при решении различных задач;
    • закрепить полученные знания;
  • общеучебные:
    • научить настраивать себя на работу;
    • научить вести контроль за собой и соседом по парте;
    • научить оценивать себя и соседа по парте;
  • развивающие:
    • активизировать самостоятельную деятельность;
    • развивать познавательную деятельность;
    • учить обобщать и систематизировать полученную информацию;
  • воспитательные:
    • воспитываать у учащихся “чувство плеча”;
    • воспитывать коммуникативность;
    • прививать культуру общения.

ХОД УРОКА

Перед каждым лежат ножницы и лист бумаги.

Задание 1 (3 мин).

 

– Возьмем лист бумаги, сложим его попалам и вырежем какую-нибудь фигурку. Теперь развернем лист и посмотрим на линию сгиба.

Вопрос: Какую функцию выполняет эта линия?

Предполагаемый ответ: Эта линия делит фигуру пополам.

Вопрос: Как расположены все точки фигуры на двух получившихся половинках?

Предполагаемый ответ: Все точки половинок находятся на равном расстоянии от линии сгиба и на одном уровне.

– Значит, линия сгиба делит фигурку пополам так, что 1 половинка является копией 2 половинки, т.е. эта линия непростая, она обладает замечательным свойством (все точки относительно ее находятся на одинаковом расстоянии), эта линия – ось симметрии.

Задание 2 (2 мин).

– Вырезать снежинку, найти ось симметрии, охарактеризовать ее.

Задание 3 (5 мин).

– Начертить в тетради окружность.

Вопрос: Определить, как проходит ось симметрии?

Предполагаемый ответ: По-разному.

Вопрос: Так сколько осей симметрии имеет окружность?

Предполагаемый ответ: Много.

– Правильно, окружность имеет множество осей симметрии. Такой же замечательной фигурой является шар (пространственная фигура)

Вопрос: Какие еще фигуры имеют не одну ось симметрии?

Предполагаемый ответ: Квадрат, прямоугольник, равнобедренный и равносторонний треугольники.

 

– Рассмотрим объемные фигуры: куб, пирамиду, конус, цилиндр и т.д. Эти фигуры тоже имеют ось симметрии. Определите, сколько осей симметрии у квадрата, прямоугольника, равностороннего треугольника и у предложенных объемных фигур?

Раздаю учащимся половинки фигурок из пластилина.

Задание 4 (3 мин).

– Используя полученную информацию, долепить недостающую часть фигурки.

Примечание: фигурка может быть и плоскостной, и объемной. Важно, чтобы учащиеся определили, как проходит ось симметрии, и долепили недостающий элемент. Правильность выполнения определяет сосед по парте, оценивает, насколько правильно проделана работа.

Из шнурка одного цвета на рабочем столе выложена линия (замкнутая, незамкнутая, с самопересечением, без самопересечения).

Задание 5 (групповая работа 5 мин).

– Определить визуально ось симметрии и относительно нее достроить из шнурка другого цвета вторую часть.

Правильность выполненной работы определяется самими учениками.

Перед учащимися представлены элементы рисунков

 

Задание 6 (2 мин).

– Найдите симметричные части этих рисунков.

Для закрепления пройденного материала предлагаю следующие задания, предусмотренные на 15 мин.:

1. Прямая ОР – ось симметрии треугольника КОМ.

 

Назовите все равные элементы треугольника КОР и КОМ. Каков вид этих треугольников?

2. Начертите в тетради несколько равнобедренных треугольников с общим основанием равным 6 см.

3. Начертите отрезок АВ. Постройте прямую перпендикулярную отрезку АВ и проходящую через его середину. Отметьте на ней точки С и D так, чтобы четырехугольник АСВD был симметричен относительно прямой АВ.

– Наши первоначальные представления о форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях мало отличавшихся от жизни животных. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки, в которых обнаруживается замечательное чувство формы. Когда произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, человечество вступает в новый каменный век, в неолит. Человек неолита обладал острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин, тканей, позже – обработка металлов вырабатывали представления о плоскостных и пространственных фигурах. Неолитические орнаменты радовали глаз, выявляя равенство и симметрию. – А где в природе встречается симметрия?

Предполагаемый ответ: крылья бабочек, жуков, листья деревьев…

 

– Симметрию можно наблюдать и в архитектуре. Строя здания, строители четко придерживаются симметрии.

Поэтому здания получаются такие красивые. Также примером симметрии служит человек, животные.

Задание на дом:

1. Придумать свой орнамент, изобразить его на листе формат А4 (можно нарисовать в виде ковра). 2. Нарисовать бабочек, отметить, где присутствуют элементы симметрии.

xn--i1abbnckbmcl9fb.xn--p1ai

Осевая симметрия.

  • Две точки А и А1 называются симметричными друг другу относительно прямой m, если прямая m перпендикулярна отрезку АА1 и проходит через его середину. Прямую m называют осью симметрии.
  • При сгибании плоскости чертежа по прямой m – оси симметрии симметричные фигуры совместятся.
  • Прямоугольник имеет две оси симметрии.
  • Квадрат имеет четыре оси симметрии.
  • Любая прямая, проходящая через центр окружности, является ее осью симметрии. Окружность имеет бесконечное множество осей симметрии.

Точки А и А1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА1 и проходит через его середину.

m – ось симметрии.

 

Прямоугольник ABCD имеет две оси симметрии: прямые m и l.

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

 

 

Квадрат ABCD имеет четыре оси симметрии: прямые m, l,  k и  s.

Если квадрат перегнуть по какой-либо из прямых: m, l, k или s, то обе части квадрата совпадут.

 

 

 

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые:  m, m1, m2, m3 ... 

 

 

 

 

Задание. Построить точку А1, симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А2, симметричную точке А(-4; 2) относительно оси Оy.

Точка А1(-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А2(4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

 

Запись имеет метки: математика 6 класс

www.mathematics-repetition.com

Осевая и центральная симметрия — урок. Математика, 6 класс.

Симметрия — слово греческого происхождения, как и многие другие слова, которые связаны с математикой. Оно означает соразмерность, наличие определённого порядка, закономерности в расположении частей. Смотря на объекты вокруг, мы не раз восклицаем: «Какая симметрия!»

 

Люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве.

Но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. Её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде.

 

 

Пока рассмотрим две симметрии на плоскости: относительно точки и прямой.

Центральная  симметрия

Симметрию относительно точки называют центральной симметрией.

Точки M и M1 симметричны относительно некоторой точки  \(O\), если точка \(O\) является серединой отрезка MM1.

Точка \(O\) называется центром симметрии.

 

Алгоритм построения центрально-симметричных фигур.

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\), относительно центра (точки) \(O\):

 

1. Для этого соединим точки \(A\), \(B\), \(C\) с центром \(O\) и продолжим эти отрезки;2. Измерим отрезки \(AO\), \(BO\), \(CO\)и отложим с другой стороны от точки \(O\), равные им отрезки AO=OA1;BO=OB1;CO=OC1;3. Соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно некоторой точки, равны.

Фигура симметрична относительно центра симметрии, если для каждой этой точки фигуры симметричная ей точка также лежит на этой фигуре. Такая фигура имеет центр симметрии (фигура с центральной симметрией).

Есть фигуры с центральной симметрией это, например, окружность и параллелограмм. У окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. Есть очень много фигур, у которых нет центра симметрии.

Осевая симметрия

Осевая симметрия — это симметрия относительно проведённой прямой (оси).

Точки M и M1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.

 

Алгоритм построения фигуры, симметричной относительно некоторой прямой.

 

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\) относительно красной прямой:

 

1. Для этого проведём из вершин треугольника \(ABC\) прямые, перпендикулярные оси симметрии и продолжим их дальше на другой стороне оси.2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.3. Соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно прямой, равны.

Фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры, симметричная для неё точка относительно данной прямой также находится на этой фигуре. Прямая является в этом случае осью симметрии фигуры.

Иногда у фигур несколько осей симметрии:

  • Для неразвёрнутого угла существует единственная ось симметрии — это биссектриса данного угла.
  • Для равнобедренного треугольника есть единственная ось симметрии.
  • Для равностороннего треугольника — три оси.
  • Для прямоугольника и ромба существуют две оси симметрии.
  • Для квадрата — целых четыре.
  • Для окружности осей симметрии бесчисленное множество — это каждая прямая, которая проходит через центр этой фигуры.
  • Есть фигуры без осей симметрии — это параллелограмм и треугольник, все стороны которого различны.

www.yaklass.ru

Осевая симметрия | Треугольники

Осевая симметрия — это симметрия относительно прямой.

Пусть дана некоторая прямая g.

Чтобы построить точку, симметричную некоторой точке A относительно прямой g, надо:

1) Провести из точки A к прямой g перпендикуляр AO.

 

2) На продолжении перпендикуляра с другой стороны от прямой g отложить отрезок OA1, равный отрезку AO: OA1=AO.

Полученная точка A1 симметрична точке A относительно прямой g.

Прямая g называется осью симметрии.

Таким образом, точки A и A1 симметричны относительно прямой g, если эта прямая проходит через середину отрезка AA1 и перпендикулярна к нему.

Если точка A лежит на прямой g, то симметричная ей точка есть сама точка A.

Преобразование фигуры F  в фигуру F1, при котором каждая её точка A переходит в точку A1, симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g.

Фигуры F и F1 называются фигурами, симметричными относительно прямой g.

Чтобы построить треугольник, симметричный данному относительно прямой g, достаточно построить точки, симметричные вершинам треугольника, и соединить их отрезками.

Например, треугольники ABC и A1B1C1 симметричны относительно прямой g.

Если преобразование симметрии относительно прямой g переводит фигуру в себя, то такая фигура называется симметричной относительно прямой g, а прямая g называется её осью симметрии.

Симметричная фигура своей осью симметрии делится на две равные половины. Если симметричную фигуру нарисовать на бумаге, вырезать и согнуть по оси симметрии, то эти половинки совпадут.

Примеры фигур, симметричных относительно прямой.

1) Прямоугольник.

Прямоугольник имеет 2 оси симметрии: прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

2) Ромб.

Ромб имеет две оси симметрии:

прямые, на которых лежат его диагонали.

3) Квадрат, как ромб и прямоугольник, имеет четыре оси симметрии: прямые, содержащие его диагонали, и прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

4) Окружность.

Окружность имеет бесконечное множество осей симметрии:

любая прямая, содержащая диаметр, является осью симметрии окружности.

5) Прямая.

Прямая также имеет бесконечное множество осей симметрии: любая перпендикулярная ей прямая является для данной прямой осью симметрии.

6) Равнобедренная трапеция.

Равнобедренная трапеция — фигура, симметричная относительно прямой,перпендикулярной основаниям и проходящей через их середины.

7) Равнобедренный треугольник.

Равнобедренный треугольник имеет одну ось симметрии:

прямую, проходящую через высоту (медиану, биссектрису), проведённую к основанию.

 

8) Равносторонний треугольник.

Равносторонний треугольник имеет три оси симметрии:

прямые, содержащие его высоты (медианы, биссектрисы).

 

9) Угол.

Угол — фигура, симметричная относительно прямой, содержащей его биссектрису.

 

Теорема.

Осевая симметрия является движением.

www.treugolniki.ru

Прямоугольник. Ось симметрии фигуры

Если в четырехугольнике все углы прямые, то его называют прямоугольником.

На рисунке 125 изображен прямоугольник ABCD.

Стороны AB и BC имеют общую вершину B. Их называют соседними сторонами прямоугольника ABCD. Также соседними являются, например, стороны BC и CD.

Соседние стороны прямоугольника называют его длиной и шириной.

Стороны AB и CD не имеют общих вершин. Их называют противоположными сторонами прямоугольника ABCD. Также противолежащими являются стороны BC и AD.

Противолежащие стороны прямоугольника равны.

На рисунке 125 AB = CD, BC = AD. Если длина прямоугольника равна a, а ширина − b, то его периметр вычисляют по уже знакомой тебе формуле:

P = 2a + 2b

Прямоугольник, у которого все стороны равны, называют квадратом (рис. 126).

Проведем прямую l, проходящую через середины двух противолежащих сторон прямоугольника (рис. 127). Если лист бумаги перегнуть по прямой l, то две части прямоугольника, лежащие по разные стороны от прямой l, совпадут.

Аналогичным свойством обладают фигуры, изображенные на рисунке 128. Такие фигуры называют симметричными относительно прямой. Прямую l называют осью симметрии фигуры.

Итак, прямоугольник − это фигура, имеющая ось симметрии. Также ось симметрии имеет равнобедренный треугольник (рис. 129).

Фигура может иметь более одной оси симметрии. Например, прямоугольник, отличный от квадрата, имеет две оси симметрии (рис. 130), а квадрат − четыре оси симметрии (рис. 131). Равносторонний треугольник имеет три оси симметрии (рис. 132).

Изучая окружающий мир, мы часто встречаемся с симметрией. Примеры симметрии в природе показаны на рисунке 133.

Объекты, имеющие ось симметрии, легко воспринимаются и приятные для глаза. Недаром в Древней Греции слово "симметрия" служило синонимом слов "гармония", "красота".

Идея симметрии широко используется в изобразительном искусстве, архитектуре (рис. 134).

reshalka.com

Центральная и осевая симметрии [wiki.eduVdom.com]

Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Точки А и А1 – симметричные относительно точки О

Рис.1

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центральная симметрия

Фигуры, обладающие центральной симметрией

Рис.2

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма — точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много — любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Осевая симметрия

Точки А и А1 — симметричные относительно прямой а

Рис.3

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Осевая симметрия

Рис.4

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Построение треугольника (а) симметрично относительно оси (б) и точки (в)

Рис.5

Пример

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

Дополнительно

subjects/geometry/центральная_и_осевая_симметрии.txt · Последние изменения: 2013/10/12 02:02 — ¶

wiki.eduvdom.com