Сложение дробей с целыми числами и разными знаменателями. Как решать дроби с целым числом


Сложение дробей | Онлайн калькулятор

Сложение дробей с одинаковыми знаменателями:

Определение: Суммой дробей с одинаковыми знаменателями называют дробь,числитель которой равен сумме числителей исходных дробей,и со знаменателем равным знаменателю обеих дробей.

Формула Сложим две дроби с одинаковым с одинаковыми знаменателями По формуле складываем числители, а знаменатель оставляем исходный

Важно: Если есть возможность сократить дробь, то в конечный ответ мы записываем сокращенную дробь.

Пример: При сокращении дроби у нас получится число 1/2

Сложение дробей с разными знаменателями:

Определение: Для того, чтобы найти сумму дробей с разными знаменателями сначала нужно дроби привести к общему знаменателю, а затем сложить их как дроби с одинаковыми знаменателями. Задача:

Ход решения: 1) Приводим дроби к общему знаменателю.Для этого ищем НОК - наименьшее общее кратное, для знаменателей 7 и 6 это число 42.Делим число 42 на знаменатели дробей 3/7 и 2/6Так мы нашли дополнительные множители.Дальше домножаем дроби на дополнительные множители и получаем выражение:

2) Складываем дроби.В нашем случае дробь можно сократить на 2 , и в конечный ответ записываем число 16/21

Сложение дроби и целого числа:

Определение: Для того, чтобы сложить дробь с целым числом, нужно сначала представить целое число как дробь со знаменателем равным 1.

Алгоритм расчета:1) Приводим дроби к общему знаменателю.2) Складываем дроби 3) Если есть возможность, то сокращаем полученную дробь.4) Если же получилась неправильная дробь, то вычисляем из нее целую часть.Пример: Решение: Вычисляем целую часть, и получаем ответ

Сложение смешанных дробей:

Определение: Для того, чтобы сложить смешанные дроби нужно отдельно сложить целые части, и отдельно сложить дробные части.Формула Пример: Подставляем цифры в формулу: Получаем:

Из дроби вычисляем целую часть т.к она неправильная,и получаем выражение 7+2=9.

Сложение дробей с помощью онлайн калькулятора:

Вам помог этот калькулятор? Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru

Сложение дробей

Чтобы сложить смешанные числа, надо записать их в виде неправильных дробей, а затем сложить как обыкновенные дроби. Часто удобней вначале сложить целые части, а затем дробные части, избегаю преобразования в неправильную дробь.

Пример Сложить смешанные числа

Сократим дробь с помощью нахождения наибольшего общего делителя числителя и знаменателя и деления полученного числа на числитель и знаменатель, НОД(27,60)=3, получим .

Пример Найти сумму смешанных чисел

.

В результате сложения также получим смешанное число.

Сложение нескольких дробей
Пример Сложить 3 дроби

.

Сложение обыкновенных и десятичных дробей
Пример Найти сумму

Для сложения десятичных и обыкновенных дробей нужно преобразовать их к одному формату. В данном примере преобразуем десятичную дробь 0.75 в обыкновенную дробь .

.

calcs.su

Сложение дробей с целыми числами и разными знаменателями

Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с вычислением дробей. При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

Как найти значение выражения где знаменатели разные

В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:3 2/7+6 1/3

Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:3 6/21+6 7/21=9 15/21Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:2 1/3+3 2/3В данном случае складываем целые части и дробные, получаем:5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

С нахождением суммы всё понятно, разберём вычитание:

Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

  • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

Попробуем самостоятельно вычислить значение выражений:

Разберём подробнее пример под буквой «м»:

4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:3 16/11-2 8/11=1 целая 8/11

  • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

Подведём итог:

Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.

detskoerazvitie.info

Вычитание дробей с разными знаменателями. Сложение и вычитание обыкновенных дробей

Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить абстрактное мышление и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» - сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

Как вычесть дроби, знаменатели которых одинаковые

Дроби – это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

  • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m – b/m = (k-b)/m.

Примеры вычитания дробей, знаменатели которых одинаковы

Рассмотрим, как это выглядит на примере:

7/19 - 3/19 = (7 - 3)/19 = 4/19.

От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби – «19».

На картинке ниже приведено еще несколько подобных примеров.

Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 - 3 - 8 - 2 - 7)/47 = 9/47.

От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей – «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, - «47».

Сложение дробей, имеющих одинаковый знаменатель

Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

  • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число - числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

Рассмотрим, как это выглядит на примере:

1/4 + 2/4 = 3/4.

К числителю первой слагаемой дроби - «1» - добавляем числитель второй слагаемой дроби - «2». Результат - «3» - записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, - «4».

Дроби с различными знаменателями и их вычитание

Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

  • Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

О том, как это сделать, мы поговорим подробнее.

Свойство дроби

Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

2/3 = 4/6 = 6/9 = 8/12…

Как привести несколько дробей к одному и тому же знаменателю

Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

Рассмотрим первую дробь - 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

Аналогично производим действия с оставшимися дробями.

  • 2/3 – в знаменателе не хватает одной тройки и одной двойки:2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
  • 7/9 или 7/(3 х 3) – в знаменателе не хватает двойки:7/9 = (7 х 2)/(9 х 2) = 14/18.
  • 5/6 или 5/(2 х 3) – в знаменателе не хватает тройки:5/6 = (5 х 3)/(6 х 3) = 15/18.

Все вместе это выглядит так:

Как вычесть и сложить дроби, имеющие различные знаменатели

Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

Рассмотрим это на примере: 4/18 – 3/15.

Находим кратное чисел 18 и 15:

  • Число 18 состоит из 3 х 2 х 3.
  • Число 15 состоит из 5 х 3.
  • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

  • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
  • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

Следующий этап нашего решения – приведение каждой дроби к знаменателю «90».

Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

(4 х 5)/(18 х 5) – (3 х 6)/(15 х 6) = 20/90 – 18/90 = 2/90 = 1/45.

Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

Аналогично производится и сложение дробей, имеющих различные знаменатели.

Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

  • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, – числитель неправильной дроби. Знаменатель же остается неизменным.
  • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
  • Произвести сложение или вычитание с одинаковыми знаменателями.
  • При получении неправильной дроби выделить целую часть.

Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

Вычитание дробей из целого числа

Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от натурального числа. На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

7 - 4/9 = (7 х 9)/9 - 4/9 = 53/9 - 4/9 = 49/9.

Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

fb.ru

Калькулятор дробей онлайн, вычисление дробей с решением

Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

Разновидности дробей:

  • Обыкновенные
  • Десятичные
  • Смешанные

Пример обыкновенных дробей:

Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

Пример десятичных дробей:

0,2, или 6,71 или 0,125

Смешанные дроби состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

Пример смешанных дробей:

Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

  • Сложение
  • Вычитание
  • Умножение
  • Деление

Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

Пример:

Вам нужно осуществить расчет примера:

После введения показателей в поля формы получаем:

Чтобы сделать самостоятельный расчет, введите данные в форму.

Калькулятор дробей

Введите две дроби:

Сопутствующие разделы:Математический калькулятор онлайн

calcsoft.ru

Как перевести дробь с целым числом в обычную дробь?

Умножь целую часть на знаменатель, а потом добавь числителя. У тебя получится числитель дроби, а знаменатель то же

смешанную чтоли в обычную нижнее число умноижить на то большое которое слева и + верхнее

целое число дроби умножить на знаменатель дроби (число под горизонтальной чертой) , сложить полученное с числителем дроби (число над горизонтальной чертой) . Полученную сумму записать в числитель новой дроби, а знаменатель оставить таким же, который был.

7 13 /15 + 6 6/ 12 = 13 + 13/ 15 + 6 /12 = 13 + 13·4/ 15·4 + 6·5/ 12·5 = 13 + 52/ 60 + 30/ 60 = 13 + 52 + 30 /60 = 13 82 /60 = 13 41·2/ 30·2 = 13 41/ 30 = 13 11 + 1·30/ 30 = 14 11 /30 ≈ 14.366666666666667

Помогите решить пример 2+5 7

touch.otvet.mail.ru

Вычитание дробей | Онлайн калькулятор

В математике вычитание обыкновенных дробей это действие обратное к сложению дробей. Вычесть из одной дроби другую - это означает найти такую третью дробь, которая в сумме со второй дробью дает первую.

Вычитание дробей с одинаковыми знаменателями:

Определение: Разностью дробей с одинаковыми знаменателями называют дробь, числитель которой равен разности числителей исходных дробей, и со знаменателем равным исходному. Формула Решим пример:

Вычитание дробей с разными знаменателями:

Определение: Чтобы найти разность дробей с разными знаменателями нужно привести дроби к общему знаменателю, затем вычесть дроби так же, как дроби с одинаковыми знаменателями.

Вычислим пример:

Ход решения задачи:1) Приводим дроби к общему знаменателю, для этого ищем НОК- Наименьшее общее кратное. Для наших дробей это число 30.Делим число 30 на наши знаменатели и получаем числа 5 и 6, это дополнительные множители. Дальше, домножаем и числитель, и знаменатели дробей на дополнительные множители и получаем выражение:

2) Находим ответ

Вычитание смешанных чисел:

Определение: Для того, чтобы вычесть смешанные дроби нужно отдельно вычесть целые части, и отдельно дробные части а затем, сложить вместе целую и дробную часть.Формула Рассчитаем ответ: Получаем ответ:

Вычитание дробей с помощью онлайн калькулятора:

Вам помог этот калькулятор? Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru