Определение и характеристики ломаной геометрической фигуры. Ломаная линия это что такое


Что такое ломаная?

В геометрии часто можно встретить такое понятие, как «ломаная». Поэтому мы решили подробно рассказать вам о том, что такое ломаная, и о ее составляющих. Начнем с общего определения, а потом опишем отдельные элементы ломаной линии - звенья, вершины. И, конечно, вы узнаете, чем ломаная отличается от прямой и кривой линий не только визуально, но и, разумеется, с геометрической точки зрения.

Что такое ломаная линия

Ломаной линией называется геометрическая фигура, представляющая собой непрямую линию, которая состоит из последовательно соединенных между собой отрезков. Отрезки эти могут соединяться под совершенно разными углами и даже пересекаться, однако они не должны выстраиваться в прямую линию. Строго говоря, если есть хотя бы небольшой, даже едва заметный угол между соединяемыми отрезками, то это уже будет ломаная линия. Этим ломаная линия отличается от прямой. Прямая также может состоять из отрезков, однако угол соединения этих отрезков должен быть равен нулю, иначе речь будет идти уже о ломаной линии. Что касается отличия ломаной от кривой, то здесь также все очень просто — отрезки ломаной представляют собой прямую линию, а отрезки кривой — нет.

Типы ломаных

Ломаные могут строиться по-разному: так, существуют замкнутые и незамкнутые ломаные, самопересекающиеся и непересекающиеся. Замкнутая ломаная представляет собой определенную фигуру — многоугольник. Самопересекающейся называется такая ломаная линия, отрезки которой имеют пересечения. Хорошие примеры различных ломаных с комментариями можно найти тут. Также подробное представление о различных типах ломаных дано здесь. Как вы уже, наверное, догадались, ломаные могут быть четырех типов по своей структуре:

  1. незамкнутые без пересечений;
  2. замкнутые без пересечений;
  3. незамкнутые самопересекающиеся;
  4. замкнутые самопересекающиеся.

Теперь расскажем о том, что такое звено ломаной. Звеньями ломаной называются ее стороны или отрезки, из которых состоит сама линия. Ломаной может называться такая линия, которая состоит, как минимум, из двух звеньев. Одно звено — это просто отрезок. И несколько слов о том, что такое вершина ломаной. Вершины ломаной — это точки, представляющие собой концы одних отрезков ломаной и, соответственно, начала других. В геометрии принято обозначать эти точки латинскими буквами, а саму ломаную называть по обозначениям этих вершин. Например, ломаная ABCDKLMN.

elhow.ru

Ломаная линия / Виды линий / Справочник по математике для начальной школы

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Виды линий
  5. Ломаная линия

Ломаная линия состоит из отрезков - звеньев.

Конец одного отрезка - на­чало другого. Ни­какие два соседние звена не лежат на одной прямой.

 Концы каждого звена - это вершины. Их можно обозначать буквами.

Ломаная линия бывает незамкнутая.

Из незамкнутой ломаной линии можно получить замкнутую ломаную линию.

Такая замкнутая ломаная линия называется треугольником.

У нее три вершины.

У треугольника три звена.

Замкнутая ломаная линия из четырёх звеньев называется четырёхугольником.

Замкнутая ломаная линия из пяти или шести звеньев называется многоугольником.

Чтобы найти длину ломаной линий нужно измерить длину каждого звена-отрезка и сложить все длины.

Например,

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Точка. Кривая. Прямая линия

Отрезок. Луч

Длиннее. Короче. Уже. Шире. Одинаковые по длине и ширине

Виды линий

Правило встречается в следующих упражнениях:

1 класс

Страница 43, Моро, Волкова, Степанова, Учебник, 1 часть

Страница 71, Моро, Волкова, Степанова, Учебник, 1 часть

Страница 93, Моро, Волкова, Степанова, Учебник, 1 часть

Страница 124, Моро, Волкова, Степанова, Учебник, 1 часть

Страница 17, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 34, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 12. Вариант 1. № 3, Волкова, Проверочные работы

Страница 25, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 60, Моро, Волкова, Степанова, Учебник, 2 часть

Страница 36, Моро, Волкова, Рабочая тетрадь, 2 часть

2 класс

Страница 5, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 28, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 33, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 35, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 41, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 64, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 69, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 92, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Задание 20, Моро, Волкова, Рабочая тетрадь, 1 часть

Задание 67, Моро, Волкова, Рабочая тетрадь, 1 часть

3 класс

Страница 5, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 6, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 14, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 19, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 41, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 5, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 14, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 6. Вариант 1. № 2, Моро, Волкова, Проверочные работы

Страница 7. Вариант 2. № 2, Моро, Волкова, Проверочные работы

© 2018 - budu5.com, Буду отличником!

budu5.com

Что такое ломаная

Ломаная линия – это фигура в геометрии, состоящая из отрезков, последовательно соединенных друг с другом через вершины под разными углами. Ломаная может составлять замкнутую фигуру, если концы крайних отрезков совпадают, а также пересекать саму себя.

Ломаная линия состоит из вершин и отрезков, соединяющих эти вершины. При этом основное требование – любые два последовательных отрезка не лежат на одной прямой. Составные отрезки ломаной называются ее сторонами или звеньями, а их концы – вершинами ломаной. Наименьшее возможное количество звеньев ломаной – два. Конечные вершины ломаной называются черными точками. Графически линию обозначают по названиям ее вершин, например, ломаная ABCDEFG. Ломаная линия может быть замкнутой, т.е. ее конечные вершины совпадают. Разновидностями такой линии являются многоугольники. Многоугольник – это плоская замкнутая ломаная, которая не имеет самопересечений. Вершины ломаной называются вершинами многоугольника, а ее звенья – сторонами многоугольника. Многоугольник с тремя сторонами и вершинами называется треугольником. Замкнутая ломаная с четырьмя сторонами может быть квадратом, прямоугольником, ромбом, параллелограммом, трапецией. Фигура с пятью и более сторонами называется n-угольником, где n – число вершин.Ломаная линия может иметь самопересечения. Классическим примером замкнутой ломаной с самопересечениями является пятиконечная звезда.Разновидностью ломаной линии является зигзаг, в котором отрезки параллельны друг другу через один, а последовательные образуют одинаковый угол. Зигзаги используются в швейном деле, а также при декоративном оформлении предметов обихода (посуды, мебели, книг) в качестве орнамента. Ломаная линия имеет широкое применение в картографии (построение маршрутов и схематичное изображение улиц), архитектуре (линии зданий и домой), ландшафтном дизайне (расположение дорожек, декоративное оформление), химии (молекулярные структуры и соединения), медицине (медицинские мониторы для наблюдения за сердечным ритмом) и в других областях.

completerepair.ru

Замкнутая ломаная линия — как она выглядит, и что такое вершины ломаной

Ломаной линией в геометрии принято называть геометрическую фигуру, которая состоит из двух или нескольких отрезков. Конец одного отрезка является началом другого. Обязательное условие, которому подчиняется любая ломаная, — соседние отрезки не должны располагаться на одной прямой.

Эти геометрические фигуры находят самое широкое применение в разных областях науки и практики:

  1. Картография — для построения изображений улиц и схем маршрутов.
  2. Архитектура — очертания зданий и строений.
  3. Ландшафтный дизайн — декоративное оформление и расположение тропинок.
  4. Химия — молекулярная структура сложных полимерных соединений.
  5. Медицина — мониторы для контроля функционального состояния органов и систем.

Типы ломаных линий

Рассматриваемые геометрические фигуры могут быть выстроены самыми разнообразными способами — они могут быть незамкнутыми и замкнутыми, пересекающимися и непересекающимися.

Замкнутая ломаная соответствует определенной геометрической фигуре — многоугольнику.

Если отрезки одной такой фигуры имеют точки пересечения друг с другом — эта линия называется самопересекающейся.

Всего существует 4 типа подобных линий по своей структуре:

  1. Замкнутые, которые не имеют пересечений.
  2. Незамкнутые, которые не имеют пересечений.
  3. Незамкнутые самопересекающиеся.
  4. Замкнутые, имеющие самопересечения.

Разновидностью такой геометрической фигуры может считаться зигзаг, у которого последовательные отрезки образуют прямой угол и параллельны друг другу через один. Зигзагами широко пользуются в обиходе — в портновском мастерстве, декоративном искусстве, оформлении предметов обихода.

Особенности замкнутых линий

Рассмотрим подробнее составляющие части этой геометрической фигуры.

  1. Один отрезок из тех, что составляют описываемую фигуру, называется ее звеном. Ломаной может считаться такая линия, которую составляют как минимум два отрезка — звена. Если звено одно — это просто единичный отрезок.
  2. Существует также понятие вершины ломаной. Этим термином принято называть точку, в которой соединяются концы двух звеньев. Такие точки в геометрии принято обозначать с помощью заглавных латинских букв. Сама ломаная называется сочетанием обозначений этих вершин. Например, названием такой линии может послужить сочетание ABCDEF.
  3. Если концы крайних звеньев этого геометрического объекта соединяются в одной точке, такая линия называется замкнутой.
  4. Ломаная линия может пересекать саму себя.
  5. Конечные вершины такой фигуры в геометрии принято называть черными точками.

Как уже было сказано выше, эта разновидность линий может иметь самопересечения. Наиболее популярным примером замкнутой линии, имеющей самопересечения, является пятиконечная звезда.

Многоугольник как разновидность замкнутой ломаной

Разновидностью описываемой геометрической фигуры является многоугольник. Точками в многоугольнике являются его вершины, а отрезки называются сторонами.

  1. Если вершины принадлежат одной и той же стороне многоугольника — они носят название смежных.
  2. Если отрезок соединяет две любых вершины, не являющиеся смежными, он называется диагональю.
  3. Если у многоугольника имеется n вершин — он называется n-угольником. У такой фигуры имеется количество сторон, равное n.
  4. Такая ломаная делит плоскость на 2 части — внешнюю и внутреннюю.
  5. Если точки многоугольника лежат по одну сторону от прямой и проходят через 2 соседние вершины — его принято называть выпуклым.
  6. Угол выпуклого многоугольника при данной вершине — это угол, который образован двумя его сторонами, для которых эта вершина является общей.
  7. Внешний угол выпуклого многоугольника при определенной вершине — это угол, смежный с внутренним углом многоугольника при этой же самой вершине.

Примерами многоугольников являются четырехугольники, треугольники, пятиугольники. Рассмотрим подробнее отличительные черты этих фигур.

Треугольник — это геометрическая фигура, которая состоит из трех точек, расположенных не на одной прямой. Эти точки попарно соединяются между собой отрезками.

Четырехугольником в геометрии называется фигура, которая имеет четыре угла и четыре стороны. Четырехугольники встречаются самые разнообразные — это могут быть трапеции, квадраты, параллелограммы, ромбы.

У трапеции параллельны две стороны, которые называются основаниями. Остальные две стороны не параллельны. У параллелограмма между собой параллельны две противоположные стороны.

Отличительной чертой прямоугольника является то, что все его углы прямые. У квадрата являются равными все четыре стороны. Кроме того, все углы у квадрата являются прямыми.

Если у многоугольника все стороны и углы равны, он называется правильным. Такой многоугольник всегда будет выпуклым.

liveposts.ru

звенья, вершины и длина, разновидности

Ломаная: понятиеЛоманой называется особая разновидность геометрической фигуры, которая составлена из нескольких отрезков. Эти отрезки последовательно соединены между собой своими концами. Конец каждого отрезка, за исключением последнего, является начальной точкой следующего. Смежные отрезки не должны находиться на одной прямой линии.

Существует и другое определение того, что такое ломаная фигура. Согласно ему это геометрический объект, который представляет собой непрямую линию и состоит из череды отрезков, последовательно соединенных между собой. Эти отрезки могут образовывать углы различной величины. Даже если угол между ними будет минимальным, он все равно будет ломать линию и ее уже можно считать ломаной. В этом и заключается ее основное отличие от прямой.

Это интересно: разность чисел – что это, как ее найти?

Ломаную линию следует отличать от кривой. Основное отличие заключается в том, что отрезки ломаной являются прямыми линиями, а отрезки кривой — нет. Эти понятия подробно объяснит школьная программа по математике за 8 класс.

Звенья, вершины и длина

Чтобы полностью усвоить сущность и свойства этого понятия, рассмотрим, что такое звенья ломаной линии в математике, а также что представляют собой ее вершины и длина:

  1. Описание вершин и длины ломанойОтдельные отрезки, составляющие такую линию, называются ее звеньями. Каждая такая линия может состоять как минимум из двух звеньев. Максимальное количество звеньев при этом не ограничено.
  2. Точки соединения концов этих отрезков называются вершинами.
  3. Если концы ломаной соединяются в одной точке, такая фигура носит название замкнутой. Ее звенья могут иметь взаимные пересечения.
  4. Если же звенья одной замкнутой линии не пересекаются между собой, она называется многоугольником.
  5. Геометрическое понятие длины ломаной включает в себя сумму длин всех ее звеньев.

Интересно знать: что такое выпуклый четырехугольник, его особенности и признаки.

Обозначение ее составляется из заглавных латинских букв, которые стоят на вершинах:

  1. Каждая вершина на рисунке обозначается одной буквой (например: A, B, C, D или E).
  2. Звено принято обозначать двумя буквами (концы соответствующего отрезка, например: AB, BC, CD, DE).

В целом такую совокупность принято называть ABCDE или EDCBA.

Обратите внимание: что такое луч в геометрии.

Разновидности

В геометрии принято различать несколько разновидностей по структуре:

  1. Замкнутые самопересекающиеся.
  2. Незамкнутые самопересекающиеся.
  3. Замкнутые без самопересечений.
  4. Незамкнутые без самопересечений.

Как уже было описано выше, замкнутая непересекающаяся фигура получила название многоугольника.

Если звенья фигуры имеют пересечения между собой — она называется самопересекающейся.

Многоугольники

Многоугольник — это геометрическая фигура, которая характеризуется количеством углов и звеньев. Углы составлены парами звеньев замкнутой ломаной, сходящимися в одной точке. Звенья называются еще сторонами многоугольника. Общие точки двух отрезков называют вершинами многоугольника.

МногоугольникКоличество звеньев или сторон в каждом многоугольнике соответствует количеству углов в нем же. Замкнутая ломаная из трех отрезков называется треугольником. Ломаная из четырех звеньев получила название четырехугольника. Фигура из пяти отрезков — пятиугольник и т. д.

Часть плоскости, которая ограничена замкнутой ломаной, называется плоским многоугольником. Другое ее название — многоугольная область.

Свойства

Ниже приведены основные свойства, общие для всех многоугольников:

  1. Если вершины многоугольника служат концами одной стороны, их называют соседними. Если же вершины не прилежат к одной стороне, они несоседние.
  2. Наименьшее количество сторон у многоугольника равняется трем. Однако треугольники, находясь рядом друг с другом, могут образовывать новые фигуры.
  3. Если отрезок соединяет между собой несоседние вершины, он носит название диагонали.
  4. Если фигура лежит относительно одной прямой в любой полуплоскости, она называется выпуклой. При этом прямая содержит в себе одну сторону фигуры и сама принадлежит полуплоскости.
  5. Угол, смежный внутреннему углу многоугольника при некоторой вершине, называется внешним.
  6. Если все стороны и углы многоугольника равны, он называется правильным.

Треугольники

Треугольником в математике принято называть плоскую геометрическую фигуру, которая состоит из трех точек, не располагающихся на одной прямой. Эти точки соединены тремя отрезками.

Точки представляют собой вершины или треугольника, а отрезки — его стороны. Возле каждой из вершин образуется угол треугольника. Таким образом эта фигура имеет три угла, что видно из ее названия.

Различают следующие виды треугольников:

  1. Равносторонние — все стороны их равны по длине.
  2. Разносторонние — все стороны различаются по длине.
  3. Равнобедренные — две стороны из трех имеют одинаковую длину.
  4. Остроугольные — если все углы острые.
  5. Прямоугольные — если имеется прямой угол.
  6. Тупоугольные — если есть один тупой угол.

Четырехугольники

Плоская геометрическая фигура, имеющая четыре угла и четыре стороны, называется четырехугольником.

Если все углы у четырехугольника прямые — это прямоугольник.

Правильный четырехугольник носит название квадрата.

Существуют и другие разновидности четырехугольников — ромб, трапеция, параллелограмм и пр. Все они подчиняются общим правилам, описанным выше.

obrazovanie.guru

Точка, линия, прямая, луч, отрезок, ломанная

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

точка A, точка B, точка C
ABC
точка 1, точка 2, точка 3
123

Можно нарисовать на листке бумаги три точки "А" и предложить ребёнку провести линию через две точки "А". Но как понять через какие? AAA

Линия — это множество точек. У неё измеряют только длину. Ширины и толщины она не имеет

Обозначается строчными (маленькими) латинскими буквами

линия a, линия b, линия c
abc

Линия может быть

  1. замкнутой, если её начало и конец находятся в одной точке,
  2. разомкнутой, если её начало и конец не соединены
замкнутые линии
разомкнутые линии
Ты вышел из квартиры, купил в магазине хлеб и вернулся обратно в квартиру. Какая линия получилась? Правильно, замкнутая. Ты вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб, зашёл в подъезд и разговорился с соседом. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку.
  1. самопересекающейся
  2. без самопересечений
самопересекающиеся линии
линии без самопересечений
  1. прямой
  2. ломанной
  3. кривой
прямые линии
ломанные линии
кривые линии

Прямая линия — это линия которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны

Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой

прямая линия a
a
прямая линия AB
BA

Прямые могут быть

  1. пересекающимися, если имеют общую точку. Две прямые могут пересекаться только в одной точке.
    • перпендикулярными, если пересекаются под прямым углом (90°).
  2. параллельными, если не пересекаются, не имеют общей точки.
параллельные линии
пересекающиеся линии
перпендикулярные линии

Луч — это часть прямой, которая имеет начало, но не имеет конца, её можно бесконечно продолжать только в одну сторону

У луча света на картинке начальной точкой является солнце

солнышко

Точка разделяет прямую на две части — два луча A A

Луч обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами, где первая — это точка, с которой начинается луч, а вторая — точка, лежащая на луче

луч a
a
луч AB
BA

Лучи совпадают, если

  1. расположены на одной и той же прямой,
  2. начинаются в одной точке,
  3. направлены в одну сторону
лучи AB и AC совпадают
лучи CB и CA совпадают
CBA

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками

Через одну точку можно провести любое число линий, в том числе прямых

Через две точки — неограниченное количество кривых, но только одну прямую

кривые линии, проходящие через две точки
BA
прямая линия AB
BA

От прямой «отрезали» кусочек и остался отрезок. Из примера выше видно, что его длина — наикратчайшее расстояние между двумя точками. ✂ BA✂

Отрезок обозначается двумя заглавными(большими) латинскими буквами, где первая — это точка, с которой начинается отрезок, а вторая — точка, которой заканчивается отрезок

отрезок AB
BA

Задача: где прямая, луч, отрезок, кривая?

Ломанная линия — это линия, состоящая из последовательно соединённых отрезков не под углом 180°

Длинный отрезок «поломали» на несколько коротких

Звенья ломаной (похожи на звенья цепи) — это отрезки, из которых состоит ломанная. Смежные звенья — это звенья, у которых конец одного звена является началом другого. Смежные звенья не должны лежать на одной прямой.

Вершины ломаной (похожи на вершины гор) — это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная.

Обозначается ломанная перечислением всех её вершин.

ломанная линия ABCDE
вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E
звено ломанной AB, звено ломанной BC, звено ломанной CD, звено ломанной DE
звено AB и звено BC являются смежными
звено BC и звено CD являются смежными
звено CD и звено DE являются смежными
ABCDE646212752

Длина ломанной — это сумма длин её звеньев: ABCDE = AB + BC + CD + DE = 64 + 62 + 127 + 52 = 305

Задача: какая ломанная длиннее, а у какой больше вершин? У первой линии все звенья одинаковой длины, а именно по 13см. У второй линии все звенья одинаковой длины, а именно по 49см. У третьей линии все звенья одинаковой длины, а именно по 41см.

Многоугольник — это замкнутая ломанная линия

Стороны многоугольника (помогут запомнить выражения: "пойти на все четыре стороны", "бежать в сторону дома", "с какой стороны стола сядешь?") — это звенья ломанной. Смежные стороны многоугольника — это смежные звенья ломанной.

Вершины многоугольника — это вершины ломанной. Соседние вершины — это точки концов одной стороны многоугольника.

Обозначается многоугольник перечислением всех его вершин.

замкнутая ломанная линия, не имеющая самопересечения, ABCDEF
многоугольник ABCDEF
вершина многоугольника A, вершина многоугольника B, вершина многоугольника C, вершина многоугольника D, вершина многоугольника E, вершина многоугольника F
вершина A и вершина B являются соседними
вершина B и вершина C являются соседними
вершина C и вершина D являются соседними
вершина D и вершина E являются соседними
вершина E и вершина F являются соседними
вершина F и вершина A являются соседними
сторона многоугольника AB, сторона многоугольника BC, сторона многоугольника CD, сторона многоугольника DE, сторона многоугольника EF
сторона AB и сторона BC являются смежными
сторона BC и сторона CD являются смежными
сторона CD и сторона DE являются смежными
сторона DE и сторона EF являются смежными
сторона EF и сторона FA являются смежными
ABCDEF120605812298141

Периметр многоугольника — это длина ломанной: P = AB + BC + CD + DE + EF + FA = 120 + 60 + 58 + 122 + 98 + 141 = 599

Многоугольник с тремя вершинами называется треугольником, с четырьмя — четырёхугольником, с пятью — пятиугольником и т.д.

треугольники
четырёхугольники: квадрат, прямоугольник, дельтоид, ромб, параллелограмм, трапеция
пятиугольники

shpargalkablog.ru

точка и прямая линия, отрезок, луч, ломаная линия

К основным геометрическим фигурам на плоскости относятся точка и прямая линия. Отрезок, луч, ломаная линия — простейшие геометрические фигуры на плоскости.

Точка — это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.

Всякая более сложная геометрическая фигура — это множество точек, которые обладают определенным свойством, характерным только для этой фигуры.

Прямую линию, или прямую, можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна. Прямая изображается так:

прямая линия

Часть прямой линии, ограниченная с двух сторон точками, называется отрезком прямой, или отрезком. Отрезок изображается так:

отрезок

Луч — это направленная полупрямая, которая имеет точку начала и не имеет конца. Луч изображается так:

луч

Если на прямой вы поставили точку, то этой точкой прямая разбивается па два луча, противоположно направленных. Такие лучи называются дополнительными.

дополнительные лучи

Ломаная линия — это несколько отрезков, соединенных между собой так, что конец первого отрезка является началом второго отрезка, а конец второго отрезка — началом третьего отрезка и т. д., при этом соседние (имеющие одну общую точку) отрезки расположены не на одной прямой. Если конец последнего отрезка не совпадает с началом первого, то такая ломаная линия называется незамкнутой.

ломанная линия

Выше изображена трехзвенная ломаная линия.

Если конец последнего отрезка ломаной совпадает с началом первого отрезка, то такая ломаная линия называется замкнутой. Примером замкнутой ломаной служит любой многоугольник:

Четырехзвенная замкнутая ломаная линия — четырехугольник
четырехугольник
Трехзвенная замкнутая ломаная линия — треугольник
треугольник

Плоскость, как и прямая, — это первичное понятие, не имеющее определения. У плоскости, как и у прямой, нельзя видеть ни начала, ни конца. Мы рассматриваем только часть плоскости, которая ограничена замкнутой ломаной линией.

плоскость

Примером плоскости является поверхность вашего рабочего стола, тетрадный лист, любая гладкая поверхность. Плоскость можно изобразить как заштрихованнуюгеометрическую фигуру:

плоскость

shkolo.ru