Что такое митохондрии... Митохондрии: описание, строение и функции. Митохондрии для чего нужны


Митохондрии и выносливость - одно невозможно без другого

Бытует крепко укрепившееся мнение, что выносливость человека связано с тренировкой сердечной мышцы, и что для этого нужно длительное время выполнять невысокую по интенсивности работу.На самом деле всё не так: выносливость неразрывно связано с митохондриями внутри мышечных волокон. Поэтому тренировка выносливости есть не что иное, как развитие максимального количества митохондрии внутри каждого мышечного волокна.А т.к. максимальное количество митохондрий ограничено пространством внутри мышечного волокна, то и развитие выносливости ограничено тем количеством мышц, которые присутствуют у конкретного человека.Короче: чем больше у человека митохондрий внутри конкретных мышечных групп, тем более выносливыми являются эти конкретные мышечные группы.И самое важное: не существует общей выносливости. Есть только локальная выносливость конкретных мышечных групп.

Митохондрии. Что это такое

Митохондрии – это особенные органеллы (структуры) внутри клеток человеческого организма, которые отвечают за производство энергии для мышечных сокращений. Иногда их называют энергетическими станциями клетки.При этом процесс производства энергии внутри митохондрий происходит в присутствии кислорода. Кислород делает процесс получения энергии внутри митохондрий максимально эффективным, если сравнивать процесс получения энергии без кислорода.Топливом для производства энергии могут являются совершенно различные вещества: жир, гликоген, глюкоза, лактат, ионы водорода.

Митохондрии и выносливость. Как это происходит

При мышечном сокращении всегда появляется остаточный продукт. Обычно это молочная кислота – химическое соединение из лактата и ионов водорода.По мере накопления внутри мышечного волокна (мышечной клетки) ионы водорода начинают вмешиваться в процесс получения энергии для сокращения мышечного волокна. А как только уровень концентрации ионов водорода достигает критической отметки, мышечное сокращение прекращается. И данный момент может свидетельствовать об максимальном уровне выносливости конкретной мышечной группы.Митохондрии обладают способностью поглощать ионы водорода и перерабатывать их внутри себя.Получается следующая ситуация. Если внутри мышечных волокон присутствует большое количество митохондрий, то они способны утилизировать и большее количество ионов водорода. А это означает более длительную работу конкретной мышцы без необходимости прекратить усилие.В идеале, если митохондрий внутри работающих мышечных волокон достаточно для утилизации всего количества образующихся ионов водорода, то такое мышечное волокно становится практически неутомимым и способным продолжать работу до тех пор, пока будет достаточное количество питательных веществ для сокращения мышц.Пример.Почти каждый из нас способен длительное время идти быстрым темпом, но довольно скоро бывает вынужден прекратить бег быстрым темпом. Почему так выходит?При быстрой ходьбе работают т.н. окислительные и промежуточные мышечные волокна. Окислительные мышечные волокна характеризуются максимально возможным количеством митохондрий, грубо говоря, митохондрий там 100 %.В промежуточных мышечных волокнах митохондрий ощутимо меньше, пусть это будет 50 % от максимального количества. В итоге, постепенно внутри промежуточных мышечных волокон начинают накапливаться ионы водорода, которые должны бы привести к прекращению сокращения мышечных волокон.Но этого не происходит по причине того, что ионы водорода проникают внутрь окислительных мышечных волокон, где митохондрии без труда справляются с их утилизацией.В итоге, мы способны продолжать движения до тех пор, пока в организме достаточно гликогена, а также запасов жира внутри работающих окислительных мышечных волокон. Затем мы будем вынуждены сделать отдых для пополнения запасов энергии.В случае с быстрым бегом в работу, помимо упомянутых окислительных и промежуточных мышечных волокон, включаются и т.н. гликолитические мышечные волокна, в которых почти отсутствуют митохондрии. Поэтому гликолитические мышечные волокна способны работать лишь короткое время, зато крайне интенсивно. Именно таким образом повышается скорость бега.Потом общее количество ионов водорода становится таким, что всё количество имеющихся там же митохондрий уже не способно утилизировать их. Наступает отказ от выполнения работы предложенной интенсивности.Но что было бы, если бы все мышечные группы имели внутри себя только окислительные мышечные волокна?В этом случае мышечная группа с окислительными волокнами становится неутомимой. Ее выносливость становится равной бесконечности (при условии достаточного количества питательных веществ – жиров и гликогена).Делаем следующий вывод: Для тренировки выносливости первоочередное значение имеет развитие митохондрий внутри рабочих мышечных волокон. Именно благодаря митохондриям достигается выносливость мышечных групп.Не существует общей выносливости организма, потому что выносливость (способность выполнять работу предложенной интенсивности) связана с присутствием в работающих мышцах митохондрий. Чем митохондрий там больше, тем большую выносливость способны показать мышцы.

Понравилось? Поделитесь!

blogozdorovie.ru

описание, строение и функции :: SYL.ru

Что такое митохондрии? Если ответ на этот вопрос вызывает у вас затруднения, то наша статья как раз для вас. Мы рассмотрим особенности строения этих органелл во взаимосвязи с выполняемыми функциями.

Что такое органеллы

Но для начала давайте вспомним, что такое органеллы. Так называют постоянные клеточные структуры. Митохондрии, рибосомы, пластиды, лизосомы... Все это органеллы. Подобно самой клетке, каждая подобная структура имеет общий план строения. Органеллы состоят из поверхностного аппарата и внутреннего содержимого - матрикса. Каждую из них можно сравнить с органами живых существ. Органеллы также имеют свои характерные черты, обусловливающие их биологическую роль.

Классификация клеточных структур

Органеллы объединяют в группы по признаку строения их поверхностного аппарата. Различают одно-, дву- и немембранные постоянные клеточные структуры. К первой группе относятся лизосомы, комплекс Гольджи, эндоплазматический ретикулум, пероксисомы и различные виды вакуолей. Ядро, митохондрия и пластиды - двумембранные. А рибосомы, клеточный центр и органеллы движения полностью лишены поверхностного аппарата.

Теория симбиогенеза

Что такое митохондрии? Для эволюционного учения это не просто структуры клетки. Согласно симбиотической теории, митохондрии и хлоропласты являются результатом метаморфоз прокариот. Вполне возможно, что митохондрии произошли от аэробных бактерий, а пластиды - от фотосинтезирующих. Доказательством этой теории является тот факт, что данные структуры имеют собственный генетический аппарат, представленный кольцевой молекулой ДНК, двойную мембрану и рибосомы. Существует также предположение, что в дальнейшем от митохондрий произошли животные эукариотические клетки, а от хлоропластов - растительные.

Расположение в клетках

Митохондрии являются составляющей частью клеток преобладающей части растений, животных и грибов. Отсутствуют они только у анаэробных одноклеточных эукариот, обитающих в бескислородной среде.

Строение и биологическая роль митохондрий долгое время оставались загадкой. Впервые при помощи микроскопа их удалось увидеть Рудольфу Келликеру в 1850 году. В мышечных клетках ученый обнаружил многочисленные гранулы, которые на свету были похожи на пух. Понять, какова роль этих удивительных структур, стало возможно благодаря изобретению профессора Пенсильванского университета Бриттона Ченса. Он сконструировал прибор, который позволял видеть сквозь органеллы. Так была определена структура и доказана роль митохондрий в обеспечении энергией клеток и организма в целом.

Форма и размер митохондрий

Митохондрии могут иметь форму палочек, нитей или круглых телец. Длина их достигает от 0, 5 до 10 мкм. Количество данных органелл в клетке напрямую зависит от интенсивности протекающих в ней обменных процессов. К примеру, у одноклеточных паразитических жгутиконосцев - трипаносом - в клетке расположена единственная крупная митохондрия. Тогда как в амебе может находиться до пятисот тысяч этих структур.

Общий план строения

Рассмотрим, что такое митохондрии с точки зрения особенностей их строения. Это двумембранные органеллы. Причем наружная - гладкая, а внутренняя имеет выросты. Матрикс митохондрий представлен различными ферментами, рибосомами, мономерами органических веществ, ионами и скоплениями кольцевых молекул ДНК. Такой состав делает возможным протекание важнейших химических реакций: цикла трикарбоновых кислот, мочевины, окислительного фосфорилирования.

Значение кинетопласта

Эта структура наблюдается только у паразитических одноклеточных организмов - трипаносом или лейшманий. Кинетопласт внутри единственной гигантской митохондрии. Он представляет собой хорошо выраженное скопление ДНК. Эта структура практически всегда располагается у основания жгутика, эффективно обеспечивая его необходимой для движения в вязкой среде энергией. Кинетопласт имеет форму мини- и максиколец. Ученые доказали, что если паразит утрачивает свою специфичную ДНК, он не может существовать в организме насекомого. Все дело в том, что в его кинетопласте закодирована информация о единице фермента, который необходим для осуществления процесса фосфорилирования. Однако такие организмы способны развиваться в тканях позвоночных, где получают энергию в ходе процессе гликолиза.

Мембрана митохондрии

Мембраны митохондрий не одинаковы по своему строению. Замкнутая наружная является гладкой. Она образована бислоем липидов с фрагментами белковых молекул. Его общая толщина составляет 7 нм. Данная структура выполняет функции отграничения от цитоплазмы , а также взаимосвязи органеллы с окружающей средой. Последняя возможна благодаря наличию белка порина, который формирует каналы. По ним посредством активного и пассивного транспорта передвигаются молекулы.

Химическую основу внутренней мембраны составляют белки. Она образует внутри органоида многочисленные складки - кристы. Эти структуры в значительной степени увеличивают активную поверхность органеллы. Главной особенностью строения внутренней мембраны является полная непроницаемость для протонов. В ней не образуются каналы для проникновения ионов извне. В отдельных местах наружная и внутренняя соприкасаются. Здесь расположен особый рецепторный белок. Это своеобразный проводник. С его помощью митохондриальные белки, которые закодированы в ядре, проникают внутрь органеллы. Между мембранами находится пространство, толщиной до 20 нм. В нем расположены различные виды белков, которые являются обязательными компонентами дыхательной цепи.

Функции митохондрий

Строение митохондрии напрямую взаимосвязано с выполняемыми функциями. Основная из них заключается в осуществлении синтеза аденозинтрифосфата (АТФ). Это макромолекула, которая случит основным переносчиком энергии в клетке. В ее состав входит азотистое основание аденин, моносахарид рибоза и три остатка фосфорной кислоты. Именно между последними элементами заключено основное количество энергии. При разрыве одной из них максимально ее может выделиться до 60 кДж. В целом прокариотическая клетка содержит 1 млрд молекул АТФ. Эти структуры постоянно находятся в работе: существование каждой из них в неизменном виде не продолжается больше одной минуты. Молекулы АТФ постоянно синтезируются и расщепляются, обеспечивая организм энергией в тот момент, когда это необходимо.

По этой причине митохондрии называют "энергетическими станциями". Именно в них происходит окисление органических веществ под действием ферментов. Энергия, которая при этом образуется, запасается и хранится в виде АТФ. К примеру, при окислении 1 г углеводов образуется 36 макромолекул этого вещества.

Строение митохондрии позволяет им выполнять еще одну функцию. Благодаря своей полуавтономности они являются дополнительным носителем наследственной информации. Ученые установили, что ДНК самих органелл не могут функционировать самостоятельно. Дело в том, что они не содержат всех необходимых для своей работы белков, поэтому заимствуют их в наследственном материале ядерного аппарата.

Итак, в нашей статье мы рассмотрели, что такое митохондрии. Это двумембранные клеточные структуры, в матриксе которых осуществляется ряд сложных химических процессов. Результатом работы митохондрий является синтез АТФ - соединение, которое обеспечивает организм необходимым количеством энергии.

www.syl.ru

Митохондрии организма | Методы лечения заболеваний

Для оптимизации митохондрий вам нужно есть правильные виды продуктов питания в достаточном количестве

Многие люди жалуются на то, что им очень сложно похудеть, поскольку приходится бороться с медленным метаболизмом. Однако, метаболизм является гибким и при помощи правильной стратегии его можно оптимизировать. Дело в том, что за похудение отвечают митохондрии человека, которые передаются по наследству от матери. Изменить активность митохондрий – это значит активизировать метаболизм. Чтобы понять механизм похудения, давайте разберемся в биохимии организма.

Каждый человек рождается с индивидуальной биохимией. В вашем организме есть триллионы маленьких энергетических заводов – клеточных органелл митохондрий. Митохондрии преобразуют кислород (которым вы дышите) и пищу (которую вы едите) в энергию организма.

Митохондрии – это своего рода двигатели внутреннего сгорания клеток организма. Наличие эффективных митохондрий означает, что ваш организм будет эффективно сжигать калории. В этом случае у вас будет быстрый метаболизм. Неэффективные митохондрии не сжигают калории и замедляют метаболизм организма.

Эффективность митохондрий определяют гены

Следует отметить, что эффективность митохондрий определяют гены. Исследование показало, что если у вас есть родитель или родной брат, который страдает от сахарного диабета 2 типа (даже если масса вашего тела в норме!), то ваши митохондрии на 50% менее эффективны при сжигании калорий, чем у обычного человека.

Эта генетическая предрасположенности означает, что вы с большей вероятностью будете страдать от избыточной массы тела и сахарного диабета. Это впоследствии отрицательно повлияет на ваши митохондрии. Кроме того, само по себе старение и другие хронические заболевания (болезнь сердца, деменция и др.) создают митохондриальную дисфункцию.

Как диета влияет на митохондрии?

Тем не менее, самое большое влияние на митохондрии и процесс похудения оказывает ваша диета. Пища – это своего рода информация, которая говорит вашим клеткам и митохондриям, что им делать. Когда вы едите много сахара и обработанных, вызывающих воспаление продуктов (в том числе рафинированных масел) или просто употребляете слишком много пищи, то вы перегружаете митохондрии в клетках, что вызывает их повреждение. Кроме того, режим голодания приводит к тому, что ваше тело запасает жир. Прочтите статью: Диета для ускорения метаболизма.

Это не означает, что вы не можете контролировать функции своих митохондрий. Для оптимизации митохондрий вам нужно есть правильные виды продуктов питания в достаточном количестве.

Другие факторы, которые влияют на митохондрии: экологические токсины, скрытые инфекции, стресс и микрофлора кишечника.

Как можно ускорить похудение и активизировать митохондрии?

Вы сможете увеличить количество и функции своих митохондрий, если будете следовать следующим рекомендациям:

  1. Ешьте много полезных жиров. Здоровые жиры, содержащиеся в авокадо, орехах, семенах и дикой жирной рыбе являются предпочтительным топливом для ваших митохондрий. Хорошие жиры также содержатся в кокосовом масле.
  2. Употребляйте красочные фрукты и овощи. Красочные, богатые антиоксидантами растительные продукты важны для здоровых митохондрий и уменьшения окислительного стресса.
  3. Не употребляйте сахар и муку. Углеводы с высоким гликемическим индексом создают огромную нагрузку на митохондрии. На самом деле, самый большой драйвер, который повреждает все системы организма, – это быстро расщепляющиеся углеводы пищи.
  4. Сочетайте интервальные и силовые тренировки. Исследования показывают, что интервальные нагрузки (когда вы выполняете интенсивные нагрузки в течение 30-60 секунд, замедляетесь на несколько минут, а затем опять становитесь очень активны) в сочетании с силовой тренировкой – это отличный способ, чтобы создать новые, улучшенные митохондрии. Силовые тренировки строят мышцы и создают больше митохондрий, в то время как интервальные тренировки улучшают митохондриальную функцию.
  5. Важен здоровый сон. Исследования показывают, что недостаточный сон усугубляет воспаление, увеличивает риск заболеваний сердца, подавляет иммунную систему и активность головного мозга, а также клеточную производительность. Чтобы исправить это, старайтесь спать не менее 8 ч каждую ночь.

Даже несмотря на генетику, вы можете приобрести власть над своим метаболизмом и здоровьем. Если вы научитесь активизировать митохондрии, то сможете увеличить свой метаболизм и быстро похудеть. Какую стратегию применяете вы для повышения уровня энергии, похудения и улучшения сжигания жира?

medimet.info

МИТОХОНДРИИ

О СЛОЖНОМ ПРОСТЫМ ЯЗЫКОМ.

Тема эта сложная и комплексная, затрагивающая сразу же огромное количество биохимических процессов происходящих в нашем организме. Но давайте все таки попробуем разобраться, что же такое митохондрии и как они работают.

И так, митохондрии это одна из самых важных составляющих живой клетки. Если говорить простым языком то можно сказать, что это энергетическая станция клетки. Их деятельность основана на окисление органических соединений и генерации электрического потенциала (энергии освободившейся при распаде молекулы АТФ) для осуществления мышечного сокращения.

Все мы знаем, что работа нашего организма происходит в строгом соответствии с первым законом термодинамики. Энергия не создается в нашем организме, а лишь превращается. Организм только выбирает форму трансформации энергии, не производя ее, от химической к механической и тепловой. Основным источником всей энергии на планете Земля является Солнце. Приходя к нам в форме света, энергия поглощается хлорофиллом растений, там она возбуждает электрон атома водорода и таким образом дает энергию живой материи.

Своей жизнью мы обязаны энергии маленького электрона.

Работа митохондрии заключается в ступенчатом переносе энергии электрона водорода между атомами металлов, присутствующих в группах белковых комплексов дыхательной цепи (электронно-транспортной цепи белков), где каждый последующий комплекс обладает более высоким сродством к электрону притягивая его, чем предыдущий, до тех пор, пока электрон не соединиться с молекулярным кислородом, обладающим наибольшим сродством к электрону.

Каждый раз при передачи электрона по цепи высвобождается энергия которая аккумулируется в виде электрохимического градиента и затем реализовывается в виде мышечного сокращения и выделения тепла.

Серия окислительных процессов в митохондрии позволяющая перенести энергетический потенциал электрона называется «внутриклеточным дыханием» или часто «дыхательной цепью», так как электрон по цепочки передается от атома к атому до тех пор пока не достигнет своей конечной цели атома кислорода.

Митохондриям нужен кислород для переноса энергии в процессе окисления.

Митохондрии потребляют до 80% кислорода который мы вдыхаем.

Митохондрия представляет из себя постоянную структуру клетки, расположенную в ее цитоплазме. Размер митохондрии обычно составляет от 0,5 до 1 мкм в диаметре. По форме она имеет зернистую структуру и может занимать до 20% объема клетки. Такая постоянная органическая структура клетки называется органелла. К органеллам относятся и миофибриллы – сократительные единицы мышечной клетки; и ядро клетки это тоже органелла. Вообще, любая постоянная структура клетки является органоидом-органеллой.

Открыл митохондрии и впервые описал немецкий анатом и гистолог Рихард Альтман в 1894 году, а название этой органелле дал другой немецкий гистолог К. Бенд в 1897 году. Но только в 1920 году, опять же немецкий биохимик Отто Вагбург, доказал, что с митохондриями связаны процессы клеточного дыхания.

Существует теория, согласно которой митохондрии появились в результате захвата примитивными клетками, клетками которые сами не могли использовать кислород для генерации энергии, бактерий протогенотов, которые могли это делать. Именно потому, что митохондрия ранее представляла из себя отдельный живой организм она и по сей день обладает собственным ДНК.

Митохондрии ранее представляли из себя самостоятельный живой организм.

В ходе эволюции прогеноты предали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру и перестали быть самостоятельными организмами. Митохондрии присутствуют во всех клетках. Даже в сперматозоиде есть митохондрии. Именно благодаря им приводится в движение хвостик сперматозоида осуществляющий его движение. Но особенно много митахондрий в тех местах, где необходима энергия для любых жизненных процессов. И это конечно прежде всего мышечные клетки.

В мышечных клетках митохондрии могут объединяться в группы гигантских разветвленных митохондрий, связанных друг с другом с помощью межмитохондриальных контактов, в которых они создают согласованную работающую кооперативную систему. Пространство в такой зоне имеет повышенную электронную плотность. Новые митохондрии образуются путем простого деления предыдущих органелл. Наиболее «простой» и доступный всем клеткам механизм энергетического обеспечения чаще всего называют общим понятием гликолиз. 

Это процесс последовательного разложения глюкозы до пировиноградной кислоты. Если этот процесс происходит без участия молекулярного кислорода или с недостаточным его присутствием, то он называется анаэробный гликолиз. При этом глюкоза расщепляется не до конечных продуктов, а до молочной и пировиноградной кислоты которая далее претерпевает дальнейшие превращения в ходе брожения. Поэтому высвобождающейся энергии бывает меньше, но и скорость получения энергии быстрее. В результате анаэробного гликолиза из одной молекулы глюкозы клетка получает 2 молекулы АТФ и 2 молекулы молочной кислоты. Такой «базовый» энергетический процесс может протекать внутри любой клетки без участия митохондрий. 

В присутствии молекулярного кислорода внутри митохондрий осуществляется аэробный гликолиз в рамках «дыхательной цепи». Пировиноградная кислота в аэробных условиях вовлекается в цикл трикарбоновых кислот или цикл Кребса. В результате этого многостадийного процесса из одной молекулы глюкозы образуется 36 молекул АТФ. Сравнение энергетического баланса клетки, имеющей развитые митохондрии и клетки, где они не развиты показывает (при достаточном количестве кислорода) различие в полноте использования энергии глюкозы внутри клетки почти в 20 раз!

У человека, волокна скелетных мышц можно условно разделить на три типа исходя из механических и метаболических свойств: - медленные окислительные; - быстрые гликолитические; - быстрые окислительно-гликолитические.

Быстрые мышечные волокна предназначены для выполнения быстрой и тяжелой работы. Для своего сокращения они используют в основном быстрые источники энергии, а именно криатинфосфот и анаэробный гликолиз. Содержание митохондрий в таких типах волокон значительно меньше чем в медленных мышечных волокнах.

Медленные мышечные волокна выполняют медленные сокращения, но способны работать длительное время. В качестве энергии они используют аэробный гликолиз и синтез энергии из жиров. Это дает гораздо больше энергии чем анаэробный гликолиз, но требует в замен больше времени, так как цепочка деградации глюкозы более сложная и требует присутствия кислорода, транспортировка которого к месту преобразования энергии тоже занимает время. Медленные мышечные волокна называют красными из-за миоглобина – белка, ответственный за доставку кислорода внутрь волокна. Медленные мышечные волокна содержат значительное количество митохондрий.

О мышечных волокнах подробнее можно прочитать в материале по ссылке.

Возникает вопрос, каким образом и с помощью каких упражнений можно развить в мышечных клетках разветвленную сеть митохондрий? Существуют различные теории и методики тренировок и о них в материале по ссылке.

trail-run.ru

Для чего нужно развивать быстрые мышцы и роль митохондрий в выносливости организма?

Вопрос не просто интересный, он очень актуальный. Так как любители и спортсмены все время ищут возможности повысить выносливость организма, стараются развивать белые и красные мышцы, выясняют на практике роль митохондрий.  И все дружно нарезают круги в парках и бассейнах, потеют в спортзалах, развивая мышечные и энергетические ресурсы организма.

Изрядно пришлось попотеть и мне, собирая информацию из разных источников, с одной стороны, а также протестировать на себе, с другой.  Спасибо моим друзьям,  наставникам и специалистам по этой части Руслану Гафиятуллину, Резеде Хакимзяновой, Виктору Селуянову, Андрею Ермину и коллективу преподавателей WellFitness.  На самом деле работа еще в самом разгаре и есть промежуточные результаты и вот хотел поделиться своими наработками.

Надо понимать какие мышцы и для чего вы хотите накачать? Какая цель? Повысить тонус мышц, выступить на соревнованиях по бодибилдингу, сделать тело спортивным, подкачать ноги и грудь, стать первым по спринтерскому бегу в «Кроссе наций» и т.п. Цель вы определяете сами.

По-простому говоря, есть два основных типа мышечных волокон: гликолитические мышечные волокна (ГМВ), окислительные мышечные волокна (ОМВ), но еще выделяют и промежуточные мышечные волокна (ПМВ), но я их рассматривать не буду. У каждых своя специфика, свои особенности, функции и по-разному надо тренировать.   Сегодня разомнем ГМВ.

Гликолитические мышечные волокна (ГМВ) — в простонародье «белое мясо» или «быстрые мышцы».  Чтобы вы представляли, ГМВ — это огромные мышцы у качков и бодибилдеров. ГМВ  или «белое мясо»  наращивается подъемом больших весов или упражнениями с отягощением с максимальными весами.

Чем больше «белого мяса» у человека, тем он должен быть сильнее. Здоровее в объемах и больше тяжести поднимать. Как Арнольд Шварценеггер.  ГМВ хорошо развито у спортсменов участвующих в скоростных и коротких дисциплинах, где нужна взрывная работа. Например, спринтеры на 60-100 метров, пловцы на 50-100 метров,  конькобежцы, велотрек и т.п. Вы видели их «банки» на ногах, так вот вся мощь у них практически там. А вот ОМВ направлены на длительную, интенсивную работу и развиты у стайеров, представителей циклических видов спорта: марафонцы, лыжники, велосипедисты, триатлонисты, пловцы на длинные дистанции.

Казалось бы, зачем мне мышцы на руках и ногах, если для марафонцев и триатлонистов важнее окислительные мышечные волокна ОМВ («медленные» мышцы) или по-другому, «красное мясо», которые участвуют в интенсивной и продолжительной работе…

Так вот, сейчас немного загрузимся… Мышечное волокно (МВ) человека состоит из белковых (1) актиновых и миозиновых нитей, которые в свою очередь составляют (2) саркомер (это базовая сократительная единица поперечно-полосатых мышц). Чередование светлых и темных полос, то есть саркомер, являются структурными элементами длинной мышечной нити называемой (3) миофибриллой (МФ). Из множества таких нитей состоят как раз (4) мышечные волокна, которые собираются в (5) пучки мышечных волокон и образуют (6) мышцу. Теперь можете пощупать свой бицепс на руке и нащупать миофибриллы)

Есть еще важная органелла в мышечном волокне называемая  митохондрией (МХ). Нет, ну МХ есть в каждой клетке нашего организма и они участвуют в большом числе химических реакций, таких как клеточное дыхание. МХ это энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза.  МХ характерна для эукариотических клеток, которые содержат ядро,  присущи растениям, грибам, животным.  В клетках органов животных может содержаться сотни и тысячи митохондрий (мозг, сердце, мышцы).Но больше всего их в мышцах, на которые приходится большая нагрузка (квадрицепс, двуглавая мышца бедра, бицепс, трицепс, икроножная мышца).

МХ, одни из важнейших структурных компонентов мышечного волокна, они располагаются вдоль МФ, порой создавая целые цепочки. В МХ протекает аэробное окисление углеводов, жиров и аминокислот, а за счет энергии, выделяющейся при окислении, происходит ресинтез АТФ (АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов). Если ее любить и ухаживать за ней, то вы сможете быть очень выносливым человеком и очень долгое время бегать, плавать, крутить педали. Но о МХ мы поговорим в другой раз. Хотя чуть-чуть я их еще коснусь.

 

Для  чего я все это рассказывал, чтобы было понятно из того, что будет дальше.

Пройти полный IRONMAN (соревнование по триатлону, кто еще не в курсе), где надо проплыть 4 км, 180 проехать и 42 пробежать. Всего 226 км на которые дают 17 часов. Это дело не простое! Можно пройти за 17 часов, можно за 10 часов, а можно и свалиться, где-нибудь под кустом.  Многие не догадываются или просто не понимают,  а может понимают, но никто об этом особо не говорит. А именно, для чего циклическим видам спорта нужно развивать ГМВ, дополнительно к ОМВ.

Дело в том, что ГМВ это взрывная мышца для скоростной работы и вроде как для долгих пробежек в ней смысла нет. НО! К тому же ГМВ, в отличие от ОМВ, скудна на наличие МХ в МФ. Однако, при увеличении мышечной гликолитической массы в сочетании с тренировками на развитие ОМВ и интенсивными тренировками есть возможность  у ГМВ забрать часть мышечных волокон под ОМВ. То есть масса ОМВ станет больше! Что это дает?

Возвращаемся к митохондриям. ОМВ богаты на создание не просто МХ, но у тренированных спортсменов в МФ даже создаются целые митохондриальные цепи и увеличивается качество МХ. Для чего это нужно? Митохондрии в ОМВ развиваются при длительной аэробной работе (подробнее о развитии МХ мы рассмотрим в другом материале). Забрав у ГМВ часть мышц под ОМВ их можно окислить и нарастить на них новые популяции МХ. Это будет способствовать меньшему закислению организма, скорейшему расщеплению молочной кислоты после непродолжительного усилия (например, подъема в гору без снижения темпа или обгону соперников), а также повышению общей выносливости.

В следующих статьях мы разберем, что нужно для наращивания гликолитических мышечных волокон (быстрых мышц), а также как накачать быстрые мышцы?

Похожее

maximbuvalin.ru

Митохондрии — Наука Спорту

 

Митохондрии

Автор: Андрей Антонов

Думаю, не погрешу против истины, сказав, что 3-4 года назад о самом таком понятии, как митохондрии в силовых видах спорта мало кто знал. Тем более об их роли в силовых упражнениях. Но с появлением в нашем журнале рубрики «Наука и спорт» и с опубликованием серии интервью с профессором В. Н. Селуяновым ситуация резко изменилась. Виктор Николаевич был первым ученым, досконально изучавшим проблемы локальной мышечной выносливости и доказавшим ее первостепенное значение в спорте. Ранее среди учёных превалирующим считалось развитие общей выносливости, которая определялась функциональными возможностями сердечнососудистой, дыхательной и нервной систем. Профессор доказал, что эти системы крайне редко являются причиной утомления, и что в основном работоспособность лимитирована самими мышцами, а именно количеством в них митохондриальной массы. По этой теме ученик Селуянова Евгений Борисович Мякинченко, автор более 40 научных и учебно-методических трудов в 1998 году защитил докторскую диссертацию. И речь шла о циклических видах спорта. А в силовых видах спорта об общей выносливости вообще надо забыть из-за крайне малого времени выполнения упражнения. Так кто же такие эти загадочные митохондрии, какова их роль и зачем они нужны спортсменам силовикам?Митохондрии (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) это клеточные органеллы ( так называют специализированные клеточные структуры), размером с бактерию. Они найдены в большом количестве почти во всех эукариотических клетках. Эукаритические клетки – это клетки, содержащие клеточное ядро. Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. По своему строению они представляют собой цилиндрические органеллы, встречающиеся в клетке в количестве от нескольких сот до 1—2 тысяч и занимающие 10—20 % её внутреннего объёма. Сильно варьируют так же размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих органелл относительно постоянна (0,5—1 мкм). Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок, и замкнута сама на себя. На наружную мембрану приходится около 7 % от площади поверхности всех мембран клеточных органелл. Основная функция — отграничение митохондрии от цитоплазмы. Внутренняя мембрана образует многочисленные гребневидные складки — кристы, существенно увеличивающие площадь её поверхности и, например, в клетках печени составляет около трети всех клеточных мембран.Пространство ограниченное внутренней мембраной называется матрикс. В матриксе митохондрии находятся ферментные системы окисления пирувата, жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК, РНК и собственный белоксинтезирующий аппарат митохондрии. Примечательно, что митохондрии содержат собственную цепочку ДНК, благодаря этому они, в отличие от других органелл, способны к самовоспроизведению. Правда, лишь частично. Митохондриальный белок синтезируется на 85-95% в цитоплазме и только 5-15% белкового содержимого является продуктом собственно митохондриальной трансляции. Белки, синтезируемые на митохондриальных рибосомах, включаются во внутреннюю митохондриальную мембрану. Внешняя мембрана, межмембранное пространство и матрикс комплектуются белками, продуцируемыми на цитоплазматических рибосомах.Митохондрии часто называют энергетическими станции клетки. Они занимаются ресинтезом (то есть обратным восстановлением) молекул АТФ с помощью окислительного фосфорилирования. Все мы знаем что АТФ – универсальный источник энергии в клетках. Отдавая свой фосфатный остаток, АТФ превращается в АДФ с выделением энергии. Энергетическая цель потребляемых нами углеводов, жиров и белков состоит в том, чтобы восстановить АТФ из АДФ. Для этого и нужны митохондрии. Они поглощают АДФ, Ф, кислород, пируват, жирные кислоты, глицерол, ионы водорода и выделяют ресинтезированные молекулы АТФ, углекислый газ и воду.Гликоген и глюкоза не могут проникнуть в митохондрию сквозь ее мембрану. Поэтому они ресентизируют АТФ без участия митохондрий, в саркоплазме МВ, образуя конечным продуктом распада пируват. Пируват имеет две возможности для преобразования:1) подойти к митохондриям, превратиться в ацетил-коэнзим-А, подвергнуться окислительному фосфорилированию до образования углекислого газа, воды и молекул АТФ. Этот метаболический путь — гликоген-пируват-митохондрия-углекислый газ и вода — называют аэробным гликолизом;2) с помощью фермента ЛДГ-М (лактат-дегидрогеназы мышечного типа) пируват превращается в молочную кислоту. Этот метаболический путь — гликоген-пируват- молочная кислота – называется анаэробным гликолизом .Молочная кислота состоит из аниона – отрицательно заряженной молекулы лактата и катиона – положительно заряженного иона водорода. Лактат крупная молекула, она не может участвовать в химических реакциях без участия ферментов, поэтому не может повредить клетке. Ион водорода самый маленький атом, заряженный, поэтому проникает в сложные структуры и приводит к существенным химическим разрушениям. Мембраны МВ не выпускают в кровоток отдельные протоны и анионы, а выпускают только нейтральные молекулы, поэтому в кровь ионы водорода выйти не могут, а может только молочная кислота.Жирные кислоты могут ресинтезировать АТФ только в митохондриях.Исходя из этого, понятна крайняя важность большой митохондриальной массы в рабочих мышцах спортсменов циклических видов спорта. Без наличия должного количества митохондрий пируват , при работе требуемой интенсивности, начнет частично превращаться в лактат. А образовывающиеся ионы водорода будут постепенно закислять мышцу, и в ней, соответственно, будет развиваться утомление. Основная задача спортсменов этих видов спорта – переделать свои ПМВ и ГМВ в ОМВ, и тогда они станут практически неутомимыми, на той мощности, которую им позволят развить их силовые способности. Если этой мощности будет недостаточно, то у них единственный путь дальнейшего прогресса – гипертрофировать свои ОМВ. В ОМВ митохондрии находятся на предельном уровне развития. В два слоя митохондрии не могут окружать миофибриллу. Поэтому окислительные мышечные волокна не поддаются развитию в плане увеличения выносливости. А вот если их гипертрофировать, то есть если в мышечном волокне будут добавляться новые миофибриллы, вокруг новых миофибрилл будут появляться митохондрии, то тогда аэробные возможности будут расти.А в чём польза митохондрий для спортсменов силовых видов спорта? В том, что они могут поглощать ионы водорода в ГМВ и ПМВ. А это позволяет более длительно выполнять упражнение и быстрее восстанавливаться между подходами. Даже в таких скоростно-силовых видах спорта, как тяжелая атлетика, когда отдых между подходами составляет 2-3-5 минут, возникает проблема с восстановлением мышц. А они могут восстановиться только в том случае если молочная кислота уходит. А она частично уходит в кровь, а частично попадает в соседние мышечные волокна. Либо в тех же МВ попадает в митохондрии и превращается в воду. Так вот, если нет собственных митохондрий, то процессы выхода молочной кислоты в кровь или в соседние мышечные волокна достаточно длительны и спортсмен долго восстанавливается. Поэтому правильно подготовленный спортсмен-штангист, для того чтобы показывать стабильные результаты должен иметь в своих гликолитических волокнах митохондрии. Особенно это актуально на высшем спортивном уровне, когда в финале соревнований два или один спортсмена остаются со штангой и выходят на свой следующий подход практически через 3 минуты.Очень важны митохондрии во всех видах единоборств, армрестлинге, гиревом спорте, многоповторном жиме, кроссфите.Возникает вопрос, как силовикам тренировать митохондрии в своих ГМВ? Методы тренировок были разработаны в НИИ Фундаментальных и прикладных проблем физкультуры и спорта группой ученых под руководством профессора В. Н. Селуянова. Модель опиралась непосредственно на физиологию. Во-первых, по закону физиологии, чтобы тренировать ГМВ их надо включить в работу. Отсюда сразу вытекают требования к интенсивности работы, она должна быть в районе 80% от максимума. При такой нагрузке включаются практически все двигательные единицы. Надо помнить, что мышечные волокна рекрутируются не от веса как такового, а от той интенсивности, с которой прикладывается сила. Поэтому вес используемого отягощения должен быть не 80% от максимума. Его надо сбавить до 60-50, и даже 40 кг, а приложить силу соответствующую 80% психического напряжения. То есть выполнить движение почти с максимально возможной скоростью. Во-вторых, необходимо чтобы работа продолжалась достаточное время для того, чтобы возбудить те самые механизмы, которые будут потом обеспечивать гипертрофию митохондрий. Необходимо легкое закисление, появление свободного креатина, повышение концентрации анаболических гормонов в крови и МВ. В. Н. Селуянов рекомендует делать 10 повторений в подходе, если спортсмен не может выполнить 10 повторений, то вес снижается, но психическое напряжение остается тем же. Спортсмен должен выполнять каждое движение более интенсивно. В этом случае рекрутируются все ДЕ (МВ), а степень накопления свободного креатина и ионов водорода становятся оптимальными для стимулирования транскрипции – считывания информации с ДНК. Во время такого упражнения тратится не более 30% АТФ и КрФ, поэтому во время 2 мин восстановления накопление ионов водорода и лактата не превысит критического уровня, разрушающего митохондрии. Увеличение количества подходов приводит к постепенному накоплению гормонов в крови и активной мышечной ткани, поэтому 10 подходов обеспечивают требуемую концентрацию гормонов в МВ. Главное условие – не перетренироваться! После 10-й серии должно ощущаться лишь легкое локальное утомление. Митохондрии поглощают ионы водорода, но при их избытке просто лопаются. Поэтому продолжительные тяжелые тренировки с сильным закислением не приводят к увеличению выносливости, а наоборот напрочь ее убивают.Как часто нужно делать подобные тренировки? Не реже трех раз в неделю. Можно ежедневно. Новая митохондрия образуется за 4 дня. Период ее полужизни 7-10 дней. 3 недели без тренировок и вся приобретенная выносливость падает. Если человек по вынужденным обстоятельствам долго находится без движения, например в коме или в гипсе, то митохондрии уходят даже из ММВ, и они становятся меленными гликолитическими. Такой больной после выздоровления утомляется, сделав несколько шагов. Так что физическая работоспособность киногероев вышедших из долгой комы, спустя несколько дней после выздоровления, как например, у героини Умы Турман в фильме «Убить Билла», просто физически не возможна.Организм устроен мудро и экономично. Если двигательные единицы задействованы постоянно, то миофибриллы в них просто оплетены митохондриями, и это ОМВ. Если в повседневной жизни они задействуются раз в неделю, а то и реже, то и митохондрий в них практически нет и это ГМВ. Зачем содержать и питать ненужные органеллы. Но, если образ жизни меняется на более интенсивный, выносливость растёт очень быстро. Как я уже писал, новые митохондрии образуются уже через 4 дня после тренировки. А через два месяца ежедневных тренировок достигают максимума своего развития.

nksport.ru

строение и основные функции энергетической станции клетки, как называются внутренние структуры

Митохондрия (с греческого μίτος (митос) – нить и χονδρίον (хондрион) – гранула) клеточная – двумембранный органоид, содержит свой собственный генетический материал, митохондриальную ДНК. Они встречаются как сферические или трубчатые клеточные структуры у почти всех эукариотов, но не у прокариотов.

Митохондрии – это органеллы, которые регенерируют высокоэнергетическую молекулу аденозинтрифосфата через дыхательную цепь. В дополнение к этому окислительному фосфорилированию они выполняют другие важные задачи, например, участвуют в образовании кластеров железа и серы. Строение и функции таких органоидов подробно рассмотрены ниже.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Общие сведения

Особенно много находится митохондрий в клетках с высоким энергопотреблением. К ним относятся мышечные, нервные, сенсорные клетки и ооциты. В клеточных структурах сердечной мышцы объемная доля этих органоидов достигает 36 %. Они имеют диаметр около 0.5-1.5 мкм и разнообразные формы, от сфер до сложных нитей. Их число корректируется с учетом энергетических потребностей клетки.

Эукариотические клетки, которые теряют свои митохондрии, не могут их восстановить. Существуют также эукариоты без них, например, некоторые простейшие. Количество данных органоидов на клеточную единицу обычно составляет от 1000 до 2000 при объемной доле в 25 %. Но эти значения могут сильно варьироваться в зависимости от типа клеточной структуры и организма. В зрелой клетке спермы их около четырех-пяти, в зрелой яйцеклетке – несколько сотен тысяч.

Митохондрии передаются через плазму яйцеклетки только от матери, что стало причиной исследования материнских линий. В настоящее время установлено, что также через сперму некоторые мужские органоиды импортируются в плазму оплодотворенной яйцеклетки (зиготы). Вероятно, они будут устранены довольно быстро. Однако есть несколько случаев, когда врачи смогли доказать, что митохондрии ребенка были отцовской линии. Заболевания, вызванные мутациями в митохондриальных генах, наследуются только от матери.

Интересно! Популярный научный термин «энергетическая станция клетки» был придуман в 1957 году Филиппом Сикевицем.

Схема строения митохондрии

Рассмотрим особенности строения этих важных структур. Они образованы в результате сочетания нескольких элементов. Оболочка этих органоидов складывается из внешней и внутренней мембраны, они в свою очередь состоят из фосфолипидных бислоев и белков. Обе оболочки отличаются по своим свойствам. Между ними расположено пять различных отсеков: наружная мембрана, межмембранное пространство (промежуток между двумя мембранами), внутренняя, криста и матрикс (пространство внутри внутренней мембраны), в целом – внутренние структуры органоида.

На иллюстрациях в учебниках митохондрия преимущественно выглядит как отдельная бобовидная органелла. Так ли это на самом деле? Нет, они образуют трубчатую митохондриальную сеть, которая может проходить и изменять всю клеточную единицу. Митохондрии в клетке способны сочетаться (путем слияния) и повторно делиться (делением).

Обратите внимание! В дрожжах за одну минуту совершается около двух митохондриальных слияний. Поэтому невозможно точное определение текущей численности митохондрий в клетках.

Внешняя мембрана

Наружная оболочка окружает всю органеллу и включает в себя каналы белковых комплексов, что позволяют обмен молекулами и ионами между митохондрией и цитозолем. Крупные молекулы не могут пройти через мембрану.

Внешняя, которая охватывает всю органеллу и не свернута, имеет весовое отношение фосфолипида к белку 1:1 и, таким образом, похожа на эукариотическую плазматическую мембрану. Она содержит множество интегральных белков, поринов. Порины образуют каналы, которые обеспечивают свободную диффузию молекул с массой до 5000 дальтон через оболочку. Более крупные белки могут вторгаться, когда сигнальная последовательность на N-конце связывается с большой субъединицей белка транслоксазы, из которой они затем активно перемещаются по мембранной оболочке.

Если трещины возникают во внешней оболочке, белки из межмембранного пространства могут выходить в цитозоль, что может привести к гибели клетки. Наружная мембрана может сливаться с оболочкой эндоплазматического ретикулума, а затем формировать структуру под названием MAM (ER, ассоциированную с митохондрией). Это важно для обмена сигналами между ER и митохондрией, что также необходимо для переноса липидов.

Межмембранное пространство

Участок представляет собой промежуток посреди внешней и внутренней мембраны. Поскольку внешняя обеспечивает свободное проникновение малых молекул, их концентрация, таких как ионы и сахар, в межмембранном пространстве идентична концентрациям в цитозоле. Однако для больших белков требуется передача специфической сигнальной последовательности, так что состав белков различается между межмембранным пространством и цитозолем. Таким образом, белок, который удерживается в межмембранном промежутке, является цитохромом.

Внутренняя мембрана

Внутренняя митохондриальная мембрана содержит белки с четырьмя видами функций:

  • Белки – проводят реакции оксидации респираторной цепочки.
  • Аденозинтрифосфатсинтаза, которая производит в матрице АТФ.
  • Специфические транспортные белки, которые регулируют проход метаболитов между матрицей и цитоплазмой.
  • Системы импорта белков.

Внутренняя имеет, в частности, двойной фосфолипид, кардиолипин, замещенный четырьмя жирными кислотами. Кардиолипин обычно характерен для митохондриальных мембран и бактериальных плазматических мембран. В организме человека он в основном присутствует в областях с высокой метаболической активностью или высокой энергетической активностью, таких как сократительные кардиомиоциты, в миокарде.

Внимание! Внутренняя мембрана содержит более 150 различных полипептидов, около 1/8 всех митохондриальных белков. В результате концентрация липидов ниже, чем у внешнего бислоя, и его проницаемость ниже.

Разделяется на многочисленные кристы, они расширяют внешнюю область внутренней митохондриальной оболочки, поднимая ее способность вырабатывать АТФ.

В типичной митохондрии печени, например, внешняя область, в частности кристы, примерно в пять раз превышает площадь наружной мембраны. Энергетические станции клеток, которые имеют более высокие потребности в АТФ, например, мышечные клетки, содержат больше крист, чем типичная митохондрия печени.

Внутренняя оболочка охватывает матрикс, внутреннюю жидкость митохондрии. Он соответствует цитозолю бактерий и содержит митохондриальную ДНК, ферменты цитратного цикла и их собственные митохондриальные рибосомы, которые отличаются от рибосом в цитозоле (но также и от бактерий). Межмембранное пространство содержит ферменты, которые могут фосфорилировать нуклеотиды под потреблением АТФ.

Функции

  • Важные пути деградации: цитратный цикл, для которого пируват вводится из цитозоля в матрикс. Затем пируват декарбоксилируют пируватдегидрогеназой до ацетилкофермента А. Другим источником ацетилкофермента А является деградация жирных кислот (β-окисление), которая происходит в клетках животных в митохондриях, но в растительных – только в глиоксисомах и пероксисомах. С этой целью ацилкофермент А переносят из цитозоля путем связывания с карнитином через внутреннюю митохондриальную мембрану и превращают в ацетилкофермента А. Из него большинство восстановительных эквивалентов в цикле Кребса (также известный как цикл Кребса или цикл трикарбоновой кислоты), которые затем превращаются в АТФ в окислительной цепи.
  • Окислительная цепь. Установлен электрохимический градиент между межмембранным пространством и митохондриальным матриксом, который служит для получения АТФ с помощью АТФ-синтазы, с помощью процессов переноса электронов и накопления протонов. Электроны и протоны, необходимые для создания градиента, получают путем окислительной деградации из питательных веществ (например, глюкозы), поглощаемых организмом. Первоначально гликолиз происходит в цитоплазме.
  • Апоптоз (запрограммированная гибель клеток)
  • Хранение кальция: благодаря способности абсорбировать ионы кальция и затем высвобождать их, митохондрии вмешиваются в гомеостаз кальция клетки.
  • Синтез кластеров железа-серы, требуемый, среди прочего, многими ферментами дыхательной цепи. Эта функция теперь считается существенной функцией митохондрий, т.е. как это причина, по которой почти все клетки эукариотов полагаются на энергетические станции для выживания.

Матрикс

Матрикс

Это пространство, включенное во внутреннюю митохондриальную мембрану. Содержит около двух третей общего белка. Играет решающую роль в производстве АТФ с помощью синтазы АТФ, включенной во внутреннюю мембрану. Содержит высококонцентрированную смесь сотен различных ферментов (главным образом, участвующих в деградации жирных кислот и пирувата), митохондриально-специфических рибосом, передаточной РНК и нескольких копий ДНК митохондриального генома.

Данные органоиды имеют свой собственный геном, а также ферментативное оборудование, необходимое для осуществления собственного биосинтеза белка.

Митохондрия Что такое Митохондрия и её функции

Строение и функционирование митохондрий

Вывод

Таким образом, митохондриями называются клеточные электростанции, которые производят энергию и занимают ведущее место в жизни и выживаемости отдельной клетки в частности и живого организма в целом. Митохондрии – это неотъемлемая часть живой клетки, в том числе растительной, которые до конца еще не изучены. Особенно много митохондрий в тех клетках, которым требуется больше энергии.

uchim.guru