§ 12. Кинетическая и потенциальная энергии. Потенциальная энергия равна


Потенциальная энергия | Все формулы

Потенциальная энергия — Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжести запасается в виде потенциальной энергии тела.

Для того, чтоб понять что же такое потенциальная энергия тела найдем работу, совершаемую силой тяжести при перемещении тела массой m вертикально вниз с высоты над поверхностью Земли до высоты .

Если разность пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяготения во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести то получается, что , работа силы тяжести равна

Из последней формулы видно, что работа силы тяжести при переносе материальной точки массой m в поле тяготения Земли равна разности двух значений некоторой величины mgh. Поскольку работа есть мера изменения энергии, то в правой части формулы стоит разность двух значений энергии этого тела. Это значит, что величина mgh представляет собой энергию, обусловленную положением тела в поле тяготения Земли.

Энергию, обусловленную взаимным расположением взаимодействующих между собой тел (или частей одного тела), называют потенциальной и обозначают Wp. Следовательно, для тела, находящегося в поле тяготения Земли,

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:

Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию.

Потенциальная энергия упруго деформированного тела. Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Так же есть:

Кинетическая энергия

В формуле мы использовали :

— Потенциальная энергия

— Масса тела

— Ускорение свободного падения

— Высота на которую поднято тело

— Работа силы тяжести

— Сила тяжести

— Перемещение тела

— Жесткость пружины

— Деформация пружины

— Угол между направлением тела и силой тяжести

xn--b1agsdjmeuf9e.xn--p1ai

Потенциальная энергия | Физика

1. Определение потенциальной энергии

В предыдущем параграфе мы говорили о работе, которую может совершить тело за счет уменьшения своей скорости, а теперь нас будет интересовать работа, которую может совершить тело или система тел вследствие изменения положения тел.

Рассмотрим примеры.

Работа поднятого груза. Когда подвешенный на тросе груз равномерно движется вниз, он действует на трос силой, направленной тоже вниз (рис. 30.1).

Эта сила обусловлена силой тяжести: она совершает работу, действуя на груз, а груз совершает работу, действуя на трос.

Итак, благодаря действию силы тяжести груз может совершить работу при движении вниз.

Работа пружины. Когда деформация пружины уменьшается, пружина действует на тело силой упругости, направленной так же, как перемещение тела (рис. 30.2). При этом пружина совершает положительную работу.

Итак, деформированная пружина может совершить работу при возвращении в недеформированное состояние.

В рассмотренных примерах работу совершают силы тяготения и силы упругости. Как мы уже знаем, общая важная особенность этих сил состоит в том, что при движении по замкнутой траектории (когда тело возвращается в начальное положение) работа этих сил равна нулю. (Такие силы называют консервативными. Если между телами замкнутой системы действуют только консервативные силы, то, как мы увидим далее, механическая энергия системы сохраняется («консервируется»).)

Благодаря этому для системы тел, взаимодействующих посредством сил тяготения и упругости, можно определить потенциальную энергию как величину, характеризующую способность системы тел совершать работу и зависящую только от взаимного положения тел.

Потенциальная энергия системы тел характеризует ее способность совершать работу вследствие изменения взаимного положения взаимодействующих тел.

Если система тел совершает положительную работу, потенциальная энергия системы уменьшается. А если система тел совершает отрицательную работу, ее потенциальная энергия увеличивается. При этом

изменение потенциальной энергии системы тел равно работе сил упругости и тяготения, действующих со стороны тел системы, взятой со знаком минус:

Ep2 – Ep1 = –A     (1)

Здесь Ep1 и Ep2 обозначают начальную и конечную потенциальную энергию системы тел.

(Мы приводим определение потенциальной энергии, применимое к механическим явлениям. В дальнейшем мы расширим и уточним это определение.)

? 1. Как изменяется потенциальная энергия системы «камень + Земля», когда камень движется вверх? вниз? Объясните свои ответы.

? 2. Как изменяется потенциальная энергия пружины, когда деформация уменьшается? увеличивается? Объясните свои ответы.

Нулевой уровень потенциальной энергии. Из формулы (1) следует, что физический смысл имеет только изменение потенциальной энергии: оно измеряется работой, совершенной телами системы.

Поэтому нулевой уровень потенциальной энергии (состояние системы, которому сопоставляется нулевое значение потенциальной энергии) выбирают так, чтобы упростить расчеты.

2. Потенциальная энергия поднятого груза

Когда груз массой m равномерно перемещается вертикально вниз на расстояние h, он совершает положительную работу mgh, потому что он действует на опору или поднес направленной вниз силой (весом груза), равной силе тяжести.

Следовательно, при уменьшении высоты груза на h потенциальная энергия груза уменьшается на mgh. (Важно понимать, что это потенциальная энергия системы взаимодействующих тел – груза и Земли.) Если сопоставить нулевой уровень потенциальной энергии наинизшему положению груза, то

потенциальная энергия груза массой m, поднятого на высоту h, выражается формулой

Ep = mgh. (2)

? 3. Брусок массой 200 г поднят на высоту 1 м над поверхностью стола высотой 80 см (рис. 30.3).

а) Чему равна потенциальная энергия бруска, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?б) Чему равно изменение потенциальной энергии бруска при его падении на стол, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?

Эти примеры подтверждают, что имеет значение только изменение потенциальной энергии. Оно измеряется работой, совершенной телом или системой тел, и не зависит от выбора нулевого уровня потенциальной энергии.

3. Потенциальная энергия упругой деформации

При возвращении в недеформированное состояние сила упругости пружины совершает положительную работу

A = (kx2)/2.

При этом потенциальная энергия пружины уменьшается на такую же величину. Если нулевому уровню потенциальной энергии сопоставить состояние недеформированной пружины, то

потенциальная энергия деформированной пружины жесткостью k выражается формулой

Ep = (kx2)/2,     (3)

где x – деформация пружины.

Потенциальную энергию, выражаемую формулой (3), называют также потенциальной энергией упругой деформации. Она зависит от квадрата деформации. Поэтому потенциальная энергия сжатой пружины равна потенциальной энергии растянутой пружины, если модуль деформации пружины в обоих случаях один и тот же.

? 4. В начальном состоянии пружина жесткостью 200 Н/м сжата на 1 см. Как изменилась потенциальная энергия пружины, если в конечном состоянии:а) пружина не деформирована?б) сжата на 2 см?в) растянута на 1 см?г) растянута на 2 см?

? 5. Шар массой 200 г подвешен к пружине жесткостью 100 Н/м и находится в равновесии, Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.а) На какую высоту подняли шар?б) Как изменилась потенциальная энергия шара за время, в течение которого он возвращался в положение равновесия?в) Как изменилась за то же время потенциальная энергия пружины?г) Как изменилась за то же время потенциальная энергия системы «шар + Земля + пружина»?

Дополнительные вопросы и задания

6. С высоты 20 м над поверхностью земли свободно без начальной скорости падает камень массой 300 г. За нулевой уровень потенциальной энергии камня примите уровень земли.а) Чему равна потенциальная энергия камня в начальный момент?б) Чему равна потенциальная энергия камня через 1 с после начала движения?в) Через какое время после начала движения потенциальная энергия камня уменьшилась в 2 раза по сравнению с ее начальным значением?

7. Шар массой 1 кг брошен с поверхности земли с начальной скоростью 20 м/с под углом 30º к горизонту. Считайте, что сопротивлением воздуха при движении шара можно пренебречь.а) До какой максимальной высоты поднялся шар?б) Как изменилась потенциальная энергия шара за время подъема?

8. По реке с постоянной скоростью плывет плот. Как изменяется со временем:а) кинетическая энергия плота?б) потенциальная энергия плота?

9. Когда сжатую пружину сжали еще на 2 см, ее потенциальная энергия увеличилась в 9 раз.а) Во сколько раз модуль конечной деформации пружины больше, чем модуль начальной деформации?б) Чему равен модуль начальной деформации пружины?

10. Две пружины жесткостью 100 Н/м и 400 Н/м соединены последовательно. Систему соединенных пружин растянули на 5 см.а) Чему равна деформация более мягкой пружины?б) Чему равна деформация более жесткой пружины?в) Потенциальная энергия упругой деформации какой пружины больше, и во сколько раз?

phscs.ru

Кинетическая и потенциальная энергия. Закон сохранения энергии

Понятие энергии

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе силы тяжести по перемещению тела из данного положения на нулевой уровень:

   

Потенциальная энергия упруго деформированного тела – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

   

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

   

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

  • полная механическая энергия замкнутой системы тел есть величина постоянная:

       

В случае, когда на тело (или систему тел) действуют внешние силы, например, сила трения, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно работе внешних сил:

   

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и закон сохранения импульса, он справедлив не только для механических движений, но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

§ 12. Кинетическая и потенциальная энергии

Кинетическая энергия механической системы — это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

dA= dT.

Используя второй закон Ньютона F=mdv/dt

и умножая обе части равенства на перемещение dr, получим

Fdr =m(dv/dt)dr=dA

23

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

Т = тv2/2. (12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,— консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

dA=-dП. (12.2)

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

Fdr=-dП. (12.3)

Следовательно, если известна функция П(r), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня. Для консервативных сил

или в векторном виде

F=-gradП, (12.4) где

(i, j, k — единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

24

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h'), П=-mgh'.

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

Fх упр= -kx,

где Fxупр — проекция силы упругости на ось х; k — коэффициент упругости (для пружины — жесткость), а знак минус указывает, что Fx упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена, т. е.

Fx=-Fx упр=kx Элементарная работа dA, совершаемая силой Fx при бесконечно малой деформации dx, равна

dA = Fx dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx2/2.

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы — энергия механического движения и взаимодействия:

Е = Е+П,

т. е. равна сумме кинетической и потенциальной энергий.

studfiles.net

Кинетическая и потенциальная энергии | ЭТО ФИЗИКА

Если тело некоторой массы m двигалось под действием приложенных сил, и его скорость изменилась от  до  то силы совершили определенную работу A.

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Рисунок 1.19.1.

Работа равнодействующей силы.  . A = F1s cos α1 + F2s cos α2 = F1ss + F2ss = Fрss = Fрs cos α

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы  В этом случае векторы силы  перемещения  скорости  и ускорения  направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать F, s, υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как A = Fs. При равноускоренном движении перемещение s выражается формулой

Отсюда следует, что

 

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии и выражается теоремой о кинетической энергии:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью  равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел.

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела. Такие силы называются консервативными.

Работа консервативных сил на замкнутой траектории равна нулю. Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Рисунок 1.19.2.

Работа консервативной силы A1a2 = A1b2. Работа на замкнутой траектории A = A1a2 + A2b1 = A1a2 – A1b2 = 0

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести . Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещения  на ось OY, направленную вертикально вверх:

ΔA = Fт Δs cos α = –mgΔs y,

где Fт = Fтy = –mg – проекция силы тяжести, Δsy – проекция вектора перемещения. При подъеме тела вверх сила тяжести совершает отрицательную работу, так как Δsy > 0. Если тело переместилось из точки, расположенной на высоте h2, в точку, расположенную на высоте h3 от начала координатной оси OY (рис. 1.19.3), то сила тяжести совершила работу

Рисунок 1.19.3.

Работа силы тяжести

Эта работа равна изменению некоторой физической величины mgh, взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Потенциальная энергия Eр зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY. Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔEр = Eр2 – Eр1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

скриншот квеста с отскоком мячика от мостовой

 

 

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид:

где M – масса Земли, G – гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была не деформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком (см 1.18):

где k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, т. е. сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

 

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой посредством сил упругости.

Свойством консервативности наряду с силой тяжести и силой упругости обладают некоторые другие виды сил, например, сила электростатического взаимодействия между заряженными телами. Сила трения не обладает этим свойством. Работа силы трения зависит от пройденного пути. Понятие потенциальной энергии для силы трения вводить нельзя.

www.its-physics.org

Формула потенциальной энергии

ОПРЕДЕЛЕНИЕ

Потенциальная энергия — это энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

   

– потенциальная энергия тела, – его масса, – ускорение свободного падения, – высота тела над некоторым нулевым уровнем.

Условное обозначение —

Единица измерения энергии — Дж (джоуль).

Потенциальная энергия характеризует энергию тела в некотором поле тяготения. Это скалярная физическая величина. Чаще всего рассматривается поле тяготения, связанное с землёй, в нём м/с. Для других объектов величина различается.

Примеры решения задач по теме «Потенциальная энергия»

ПРИМЕР 1
Задание Тело массой 12 кг находится на высоте 5 км над землёй. Найти его потенциальную энергию.
Решение Подставим исходные данные в формулу. Не забываем, что км = м.

Дж

Ответ Потенциальная энергия тела относительно земли равна Дж.
ПРИМЕР 2
Задание Астероид массой тонн вращается вокруг Солнца на расстоянии м. Известно, что м/с. Найти потенциальную энергию астероида относительно Солнца.
Решение Помня, что т = кг подставим исходные данные в формулу:

Дж

Ответ Потенциальная энергия астероида приблизительно равна Дж.
Читайте также:

Все формулы по физике

Формула момента силы

Формула мощности

Формула силы тока

Формула массы тела

Формула давления

Формула силы выталкивания

ru.solverbook.com

Потенциальная энергия. | Объединение учителей Санкт-Петербурга

Потенциальная энергия.

Потенциальная энергия - энергия взаимодействия тел или частей тела.Потенциальная энергия (от латинского potentia - возможность) определяется взаимным расположением тел или частей  тела, т.е. расстояниями между ними.

 

Потенциальная энергия тела, поднятого над Землей. Работа силы тяжести.

Пусть тело свободно падает с высоты h2 над уровнем Земли на уровень h3.

Тогда:

При падении сила тяжести совершает положительную работу, при движении тела вверх - отрицательную.

Величину  Eз = mgh называют потенциальной энергией взаимодействия тела и Земли.

Т.о.   A = - (Ep2 - Ep1) = -ΔEp Работа сила тяжести равна изменению потенциальной энергии, взятому с противоположным знаком. Т.е., если потенциальная энергия увеличивается (тело поднимается), то сила тяжести совершает отрицательную работу и наоборот.

Eз = mgh

 

A = - (Ep2 - Ep1) = -ΔEp

Т.к. потенциальная энергия определяется координатой, то величина потенциальной энергии определяется выбором системы координат (выбором нулевого уровня). Т.е. она определяется с точностью до постоянной величины.  В данной задаче удобно за точку отсчета выбирать уровень Земли.

 

Если тело движется под углом к направлению вектора силы тяжести, то, как видно из рисунка, работа силы тяжести  независимо от траектории определяется изменением положения тела (на рис. - высотой наклонной плоскости h).

Если тело движется по произвольной траектории, то ее можно представить в виде суммы горизонтальных участков, на которых работа силы тяжести равна нулю, и вертикальных, на которых суммарная работа будет равна А=mgh.

Работа силы тяжести не зависит от формы траектории и определяется только начальным и конечным положением тела.

На замкнутой траектории работа силы тяжести равна нулю, т.к. потенциальная энергия не меняется.

Потенциальная энергия тел, взаимодействующих посредством  гравитационных сил.

, где r- расстояние между взаимодействующими телами.

Знак "-" говорит о том, что это энергия притягивающихся тел.

При сближении тел потенциальная энергия увеличивается по модулю.

Работа по сближению двух астрономических объектов: .

Потенциальная энергия упруго деформированного тела. Работа силы упругости.

Для вывода формулы используем, что работа численной равна площади под графиком зависимости силы от координаты. При малых упругих деформациях сила упругости прямо пропорциональна абсолютной деформации (з-н Гука) - см. рис.

Тогда работа при изменении деформации от  х1 до х2 равна: .

 

 

Учитывая з-н Гука, получим: 

Т.о., если принять за потенциальную энергию упруго деформированного тела величину ,

 

где k - коэффициент жесткости, а  х - абсолютная деформация тела, то можно сделать вывод , что ,

т.е. работа силы при деформации тела равна изменению потенциальной энергии этого тела, взятой с обратным знаком.

 

 

 

Работа силы упругости зависит только от координат (начальной и конечной деформаций) тела и, следовательно, не зависит от траектории. Работа по замкнутой траектории равна нулю.

 

Консервативные силы.

Консервативными (сохраняющими) наз. силы, работа которых не зависит от траектории и по замкнутой траектории равна нулю (эти силы не зависят от скоростей). Примеры: гравитационные, упругие.

 

Диссипативные силы

Диссипативными (рассеивающими) наз. силы, работа которых зависит от траектории и по замкнутой траектории не равна нулю (такие силы зависят от скорости). Пример: сила трения.

 

www.eduspb.com