Как быстро извлекать квадратные корни. Примеры на корни


Формулы корней и их свойства

ОПРЕДЕЛЕНИЕ Корнем n-ой степени из числа a называется такое число b , что имеет место равенство

    \[a={{b}^{n}}\]

Обозначается как \sqrt[n]{a} , то есть

    \[\sqrt[n]{a}=b\Leftrightarrow a={{b}^{n}}\]

На этой странице описаны основные формулы и свойства корней. Если показатель корня n является четным, то:

  1. для a<0 корень n-ой степени не определен;
  2. для a\ge 0 неотрицательное значение корня b уравнения a={{b}^{n}} называется арифметическим корнем n-ой степени из a и обозначается \sqrt[n]{a} .

Если показатель n нечетный, то уравнение a={{b}^{n}} имеет единственный корень при любом a .

Основные свойства и формулы корней

Операции над корнями выполняются по следующим правилам:

    \[\sqrt[n]{ab}=\sqrt[n]{a}\cdot \sqrt[n]{b}\]

    \[\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\ b\ne 0\]

    \[{{\left( \sqrt[n]{a} \right)}^{k}}=\sqrt[n]{{{a}^{k}}}\]

    \[\sqrt[n]{\sqrt[k]{a}}=\sqrt[kn]{a}\]

    \[\sqrt[n]{a}=\sqrt[nk]{{{a}^{k}}}\]

    \[{{\left( \sqrt[n]{a} \right)}^{n}}=a,\ a\ge 0\]

    \[\sqrt[n]{a}<\sqrt[n]{b},\ 0\le a<b\]

    \[\sqrt[2n]{{{a}^{2n}}}=\left| a \right|\]

    \[\sqrt[2n+1]{-a}=-\sqrt[2n+1]{a},\ a\ge 0\]

ПРИМЕР 1
Задание Упростить выражение \sqrt{{{x}^{2}}-6x+9}
Решение Подкоренное выражение представляет собой квадрат разности, свернем его по формуле:

    \[\sqrt{{{x}^{2}}-6x+9}=\sqrt{{{x}^{2}}-2\cdot x\cdot 3+{{3}^{2}}}=\sqrt{{{\left( x-3 \right)}^{2}}}=\left| x-3 \right|\]

Ответ \sqrt{{{x}^{2}}-6x+9}=\left| x-3 \right|
ПРИМЕР 2
Задание Сократить дробь

    \[ \frac{72\sqrt{7}}{\sqrt{567}} \]

Решение Подкоренное выражения, стоящее в знаменателе представим в виде следующего произведения:

    \[567=81\cdot 7\]

Тогда имеем:

    \[\frac{72\sqrt{7}}{\sqrt{567}}=\frac{72\sqrt{7}}{\sqrt{81\cdot 7}}\]

Корень из произведения равен произведению корней из каждого сомножителя, то есть

    \[\frac{72\sqrt{7}}{\sqrt{567}}=\frac{72\sqrt{7}}{\sqrt{81\cdot 7}}=\frac{72\sqrt{7}}{\sqrt{81}\cdot \sqrt{7}}=\frac{72}{9}=8\]

Ответ

ru.solverbook.com

Как найти квадратный корень? Свойства, примеры извлечения корня :: SYL.ru

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R2a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z2=y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z2=y и (-z)2=y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

  1. Квадратный корень из произведения равен произведению квадратных корней, при условии, что подкоренные выражения больше либо равны 0.
  2. При возведении корня квадратного в степень достаточно возвести в эту степень подкоренное выражение, при условии, что оно больше нуля.
  3. Квадратный корень из дроби равен корню из числителя, разделенному на корень из знаменателя, при условии, что подкоренное выражение числителя больше либо равно 0, а подкоренное выражение знаменателя строго больше 0.
  4. Подкоренное выражение, если оно больше нуля, можно разбить на несколько частей, из которых, в свою очередь, допустимо извлечь корень. Например: √75=√25*3=5√3.
  5. Под знак корня можно вводить любое число, при этом возведя его в квадрат. Например: 5√8=√25*√8=√200.

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

25-1=24

24-3=21

21-5=17

17-7=10

10-9=1

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769? Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1)n(2n)!/(1-2n)(n!)2(4n))yn, где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y1/2. Такой вариант удобен, например, в возведении функции в степень: (√y)4=(y1/2)4=y2. Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt. Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

www.syl.ru

Корни и степени. Квадратный корень, кубический корень.

Степенью называется выражение вида .

Здесь a — основание степени,  — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение 0^0 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

5^{-2}=\genfrac{}{}{}{0}{1}{5^2}

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где p — целое, q — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень

Уравнение x^2=4 имеет два решения: x=2 и x=-2.

Это числа, квадрат которых равен 4.

А как решить уравнение x^2=3?

Если мы нарисуем график функции y=x^2, то увидим, что и у этого уравнения есть два решения, одно из которых положительно, а другое отрицательно.

Но эти решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

Запомните это определение.

Арифметический квадратный корень обозначается .

Например,

Обратите внимание:

1) Квадратный корень можно извлекать только из неотрицательных чисел

2) Выражение всегда неотрицательно. Например, .

Перечислим свойства арифметического квадратного корня:

1.

2. 3.

Запомним, что выражение не равно . Легко проверить:

— получился другой ответ.

Кубический корень

Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

Например, , так как 2^3 = 2 \cdot 2 \cdot 2 = 8;

, так как 10^3 = 1000;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа a — это такое число, при возведении которого в -ную степень получается число a.

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени a больше .

Например,

25^{\genfrac{}{}{}{3}{\scriptstyle 1}{\scriptstyle 2}} = 5

8^{\genfrac{}{}{}{3}{\scriptstyle 1}{\scriptstyle 3}} = 2

81^{\genfrac{}{}{}{3}{\scriptstyle 1}{\scriptstyle 4}} = 3

100000^{\genfrac{}{}{}{3}{\scriptstyle 1}{\scriptstyle 5}} = 10

0,001^{\genfrac{}{}{}{3}{\scriptstyle 1}{\scriptstyle 3}} = 0,1

Выражение по определению равно .

При этом также выполняется условие, что a больше .

Например,

8^{\genfrac{}{}{}{3}{\scriptstyle 4}{\scriptstyle 3}} = \left( \sqrt[\leftroot{3} \scriptstyle 3]{8} \right) ^4 = 2^4 = 16

b^{-\genfrac{}{}{}{3}{\scriptstyle 2}{\scriptstyle 3}} = \genfrac{}{}{}{0}{1}{\sqrt[\leftroot{3} \scriptstyle 3]{b^2}}

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.

3.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Умножение корней

19 января 2017

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  1. Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  2. Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.

Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

Основное правило умножения

Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt{a}$ и $\sqrt{b}$. Для них всё вообще очевидно:

Правило умножения. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

\[\sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\]

Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

Примеры. Рассмотрим сразу четыре примера с числами:

\[\begin{align} & \sqrt{25}\cdot \sqrt{4}=\sqrt{25\cdot 4}=\sqrt{100}=10; \\ & \sqrt{32}\cdot \sqrt{2}=\sqrt{32\cdot 2}=\sqrt{64}=8; \\ & \sqrt{54}\cdot \sqrt{6}=\sqrt{54\cdot 6}=\sqrt{324}=18; \\ & \sqrt{\frac{3}{17}}\cdot \sqrt{\frac{17}{27}}=\sqrt{\frac{3}{17}\cdot \frac{17}{27}}=\sqrt{\frac{1}{9}}=\frac{1}{3}. \\ \end{align}\]

Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt{32}$ и $\sqrt{2}$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу.

Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

Примеры.

\[\begin{align} & \sqrt{2}\cdot \sqrt{3}\cdot \sqrt{6}=\sqrt{2\cdot 3\cdot 6}=\sqrt{36}=6; \\ & \sqrt{5}\cdot \sqrt{2}\cdot \sqrt{0,001}=\sqrt{5\cdot 2\cdot 0,001}= \\ & =\sqrt{10\cdot \frac{1}{1000}}=\sqrt{\frac{1}{100}}=\frac{1}{10}. \\ \end{align}\]

И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

Случай произвольного показателя

Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

Примеры. Вычислить произведения:

\[\begin{align} & \sqrt[4]{20}\cdot \sqrt[4]{\frac{125}{4}}=\sqrt[4]{20\cdot \frac{125}{4}}=\sqrt[4]{625}=5; \\ & \sqrt[3]{\frac{16}{625}}\cdot \sqrt[3]{0,16}=\sqrt[3]{\frac{16}{625}\cdot \frac{16}{100}}=\sqrt[3]{\frac{64}{{{25}^{2}}\cdot 25}}= \\ & =\sqrt[3]{\frac{{{4}^{3}}}{{{25}^{3}}}}=\sqrt[3]{{{\left( \frac{4}{25} \right)}^{3}}}=\frac{4}{25}. \\ \end{align}\]

И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

\[\begin{align} & \sqrt[2n+1]{{{a}^{2n+1}}}=a; \\ & \sqrt[2n]{{{a}^{2n}}}=\left| a \right|. \\ \end{align}\]

Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

Умножение корней с разными показателями

Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt{2}$ на какую-нибудь хрень типа $\sqrt[7]{23}$? Можно ли вообще это делать?

Да конечно можно. Всё делается вот по этой формуле:

Правило умножения корней. Чтобы умножить $\sqrt[n]{a}$ на $\sqrt[p]{b}$, достаточно выполнить вот такое преобразование:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt[n\cdot p]{{{a}^{p}}\cdot {{b}^{n}}}\]

Однако эта формула работает только при условии, что подкоренные выражения неотрицательны. Это очень важное замечание, к которому мы вернёмся чуть позже.

А пока рассмотрим парочку примеров:

\[\begin{align} & \sqrt[3]{3}\cdot \sqrt[4]{2}=\sqrt[3\cdot 4]{{{3}^{4}}\cdot {{2}^{3}}}=\sqrt[12]{81\cdot 8}=\sqrt[12]{648}; \\ & \sqrt{2}\cdot \sqrt[5]{7}=\sqrt[2\cdot 5]{{{2}^{5}}\cdot {{7}^{2}}}=\sqrt[10]{32\cdot 49}=\sqrt[10]{1568}; \\ & \sqrt{5}\cdot \sqrt[4]{3}=\sqrt[2\cdot 4]{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt[8]{625\cdot 9}=\sqrt[8]{5625}. \\ \end{align}\]

Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)

Умножать корни несложно

Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)~%» — короче, я нихрена в тот раз не понял.:)

Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

\[\sqrt[n]{a}=\sqrt[n\cdot k]{{{a}^{k}}}\]

Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt[n\cdot p]{{{a}^{p}}}\cdot \sqrt[p\cdot n]{{{b}^{n}}}=\sqrt[n\cdot p]{{{a}^{p}}\cdot {{b}^{n}}}\]

Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

\[\sqrt[3]{-5}\]

Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

\[\sqrt[3]{-5}=\sqrt[3\cdot 2]{{{\left( -5 \right)}^{2}}}=\sqrt[6]{{{5}^{2}}}\]

Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

\[\begin{align} & \sqrt[n]{a}=\sqrt[n\cdot k]{{{a}^{k}}}\Rightarrow \sqrt[n\cdot k]{{{a}^{k}}}=\sqrt[n]{a}; \\ & \sqrt[n\cdot k]{{{a}^{k}}}=\sqrt[n]{a}\Rightarrow \sqrt[6]{{{5}^{2}}}=\sqrt[3\cdot 2]{{{5}^{2}}}=\sqrt[3]{5}. \\ \end{align}\]

Но тогда получается какая-то хрень:

\[\sqrt[3]{-5}=\sqrt[3]{5}\]

Этого не может быть, потому что $\sqrt[3]{-5} \lt 0$, а $\sqrt[3]{5} \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  1. Убиться об стену констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.

В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

Пример. В числе $\sqrt[3]{-5}$ можно вынести минус из-под знака корня — тогда всё будет норм:

\[\begin{align} & \sqrt[3]{-5}=-\sqrt[3]{5} \lt 0\Rightarrow \\ & \sqrt[3]{-5}=-\sqrt[3\cdot 2]{{{5}^{2}}}=-\sqrt[6]{25}=-\sqrt[3\cdot 2]{{{5}^{2}}}=-\sqrt[3]{5} \lt 0 \\ \end{align}\]

Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

  1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
  2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt[n\cdot p]{{{a}^{p}}\cdot {{b}^{n}}}\].
  3. 3.Наслаждаемся результатом и хорошими оценками.:)

Ну что? Потренируемся?

Пример 1. Упростите выражение:

\[\begin{align} & \sqrt[3]{48}\cdot \sqrt[3]{-\frac{4}{3}}=\sqrt[3]{48}\cdot \left( -\sqrt[3]{\frac{4}{3}} \right)=-\sqrt[3]{48}\cdot \sqrt[3]{\frac{4}{3}}= \\ & =-\sqrt[3]{48\cdot \frac{4}{3}}=-\sqrt[3]{64}=-4; \end{align}\]

Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

Пример 2. Упростите выражение:

\[\begin{align} & \sqrt[4]{32}\cdot \sqrt[3]{4}=\sqrt[4]{{{2}^{5}}}\cdot \sqrt[3]{{{2}^{2}}}=\sqrt[4\cdot 3]{{{\left( {{2}^{5}} \right)}^{3}}\cdot {{\left( {{2}^{2}} \right)}^{4}}}= \\ & =\sqrt[12]{{{2}^{15}}\cdot {{2}^{8}}}=\sqrt[12]{{{2}^{23}}} \\ \end{align}\]

Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

Пример 3. Упростите выражение:

\[\begin{align} & \sqrt[6]{a}\cdot \sqrt[3]{{{a}^{4}}}=\sqrt[6\cdot 3]{{{a}^{3}}\cdot {{\left( {{a}^{4}} \right)}^{6}}}=\sqrt[18]{{{a}^{3}}\cdot {{a}^{24}}}= \\ & =\sqrt[18]{{{a}^{27}}}=\sqrt[2\cdot 9]{{{a}^{3\cdot 9}}}=\sqrt{{{a}^{3}}} \end{align}\]

Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

  1. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
  2. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.

Например, можно было поступить так:

\[\begin{align} & \sqrt[6]{a}\cdot \sqrt[3]{{{a}^{4}}}=\sqrt[6]{a}\cdot \sqrt[3\cdot 2]{{{\left( {{a}^{4}} \right)}^{2}}}=\sqrt[6]{a}\cdot \sqrt[6]{{{a}^{8}}} \\ & =\sqrt[6]{a\cdot {{a}^{8}}}=\sqrt[6]{{{a}^{9}}}=\sqrt[2\cdot 3]{{{a}^{3\cdot 3}}}=\sqrt{{{a}^{3}}} \\ \end{align}\]

По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt{5}\cdot \sqrt[4]{3}$. Теперь его можно расписать намного проще:

\[\begin{align} & \sqrt{5}\cdot \sqrt[4]{3}=\sqrt[2\cdot 4]{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt[2\cdot 4]{{{\left( {{5}^{2}}\cdot 3 \right)}^{2}}}= \\ & =\sqrt[4\cdot 2]{{{\left( 75 \right)}^{2}}}=\sqrt[4]{75}. \end{align}\]

Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

Смотрите также:

  1. Что такое корень натуральной степени $n$
  2. Сложные иррациональные уравнения — что с ними делать и как их решать?
  3. Пробный ЕГЭ 2012. Вариант 1 (без логарифмов)
  4. Как решать задачи B15 без производных
  5. Как обеспечить себе достойную старость?
  6. Выбор репетитора по математике для подготовки к ЕГЭ

www.berdov.com

Как быстро извлекать квадратные корни

14 декабря 2012

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

102 = 100;202 = 400;302 = 900;402 = 1600;...902 = 8100;1002 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

число 1296 больше 900, но меньше 1600[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

число 3364 больше 2500, но меньше 3600[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа.

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

22 = 4;82 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

корень из 3364 заканчивается на 2 или на 8[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

корень из 3364 равен 52 или 58[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный :)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Задача. Вычислите квадратный корень:

вычислите квадратный корень из 576[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900202 < 576 < 302

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

24; 26.

Осталось возвести каждое число в квадрат и сравнить с исходным:

242 = (20 + 4)2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

вычислите квадратный корень из 1369[Подпись к рисунку]

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

900 < 1369 < 1600;302 < 1369 < 402;

Смотрим на последнюю цифру:

1369 → 9;33; 37.

Возводим в квадрат:

332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

вычислите квадратный корень из 2704[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;502 < 2704 < 602;

Смотрим на последнюю цифру:

2704 → 4;52; 58.

Возводим в квадрат:

522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

вычислите квадратный корень из 4225[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;602 < 4225 < 702;

Смотрим на последнюю цифру:

4225 → 5;65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

Смотрите также:

  1. Выделение полного квадрата
  2. Преобразование выражений с корнем — часть 1
  3. Тест к уроку «Десятичные дроби» (2 вариант)
  4. Сводный тест по задачам B15 (1 вариант)
  5. Какие бывают репетиторы по математике в Москве
  6. Задача B15: работаем с показательной функцией без производной

www.berdov.com

Квадратные уравнения. Примеры решения

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0,где x- переменная, a,b,c – константы; a<>0. Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х). Из этого следует, что есть три возможных случая:1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

квадратное уравнение, функция, график

2) парабола имеет одну точку пересечения с осью Ох. Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

квадратное уравнение, функция, график

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

квадратное уравнение, функция, график

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения квадратное уравнение, формулаза знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выражениядискриминант, формулаЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формуледействительные корни уравнения, формулаПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0D=0, корниПри отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формулекомплексные корни уравнения, формула

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p, взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q. Формульная запись вышесказанного будет иметь видтеорема Виета, формулаЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияразложение квадратного уравнения на множители, формулаНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0.

Решение: Запишем коэффициенты и подставим в формулу дискриминантадискриминант, вычислениеКорень из данного значения равен 14, его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.Найденное значение подставляем в формулу корнейкорни уравнения, расчети получаем

 

Задача 2. Решить уравнение

2x2+x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминантдискриминант, вычислениеПо известным формулам находим корни квадратного уравнениякорни уравнения, вычисление

 

Задача 3. Решить уравнение

9x2-12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминантдискриминант, расчетПолучили случай когда корни совпадают. Находим значения корней по формулекорни уравнения, вычисление

 

Задача 4. Решить уравнение

x^2+x-6=0.

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравненияС второго условия получаем, что произведение должно быть равно -6. Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2}. С учетом первого условия вторую пару решений отвергаем.Корни уравнения равны

 

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см2.

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:х(18-х)=77;илих2-18х+77=0.Найдем дискриминант уравнениядискриминант, вычислениеВычисляем корни уравнениякорни уравнения, вычислениеЕсли х=11, то 18-х=7, наоборот тоже справедливо (если х=7 , то 21-х=9).

 

Задача 6. Разложить квадратное 10x2-11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминантдискриминант, вычислениеПодставляем найденное значение в формулу корней и вычисляемПрименяем формулу разложения квадратного уравнения по корнямиРаскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а, уравнение (а-3)х2+(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминантдискриминант, вычислениеупростим его и приравняем к нулюПолучили квадратное уравнение относительно параметра а, решение которого легко получить по теореме Виета. Сумма корней равна 7, а их произведение 12. Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4. Таким образом, при а=4 уравнение имеет один корень.

 

Пример 2. При каких значениях параметра а, уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение:Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3. При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0.Вычислим дискриминантдискриминант, вычислениеи найдем значения а при котором оно положительноС первого условия получим а>3. Для второго находим дискриминант и корни уравнениядискриминант, вычислениекорни уравнения, вычислениеОпределим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0. Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0, которую следует исключить, поскольку в ней исходное уравнение имеет один корень.В результате получим два интервала, которые удовлетворяют условию задачиПодобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

yukhym.com

Помогите привести примеры на корни с чередованием.

без ударения; под ударением загар, огарок; загорел, горелый; кланяться, поклон: наклонять, склоение зарево, зорька; зарница, озарение А перед суффиксом -а-касаться прикасаться касательная О ( нет суффикса -а-)прикоснуться прикосновение -мок-(-моч-)в словах со значением "пропускать жидкость; терять свои качества, находясь долгое время в воде"непромокаемый вымокнуть вымокнуть -мак-"погружать в жидкость"макать сухарь в чай -равн-"равный, наравне, одинаковый"подравнять - сделать равным уравнение -ровн-"прямой, гладкий, ровный"заровнять Исключения: равнина, ровесник, поровну, уровень, равняйсь

скакать-соскочить, касаться-коснуться, кланяться-поклон

ЗаГАР - заГОРать поКЛОНиться - КЛАНиться ЗАРя - ЗОРька КОСнуться - КАСаться СКАКать - СКОЧет РОВНый - РАВНо ПЛАВать - ПЛОВец проМОКать - обМАКнуть

загар-гореть, кланяться-наклониться, заря-зоренька, касательная-коснуться, скакать-наскочить, макать-мОкнуть, равняться-выровнять, плавать-пловец.

уГАР-уГОРелый; КЛАНяться-поКЛОН; ЗАРиться-заЗОР; КАСание_приКОСновение; поСКАКал-вСКОЧил; МАКать-проМОКнуть; РАВНый-поРОВНу; ПЛАВать-ПЛОВец.

touch.otvet.mail.ru