Иррациональные числа. Сравнение иррациональных и рациональных чисел. Рациональные числа и иррациональные


Рациональное и иррациональное число: описание и чем они отличаются?

Откуда же произошли следующие термины такие, как:

  • Рациональное число.
  • Иррациональное число.

А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

  • Рациональное число — это «разумное число».
  • Иррациональное число, соответственно, «неразумное число».

Общее понятие рационального числа

Рациональным числом считается то число, которое можно записать в виде:

  1. Обыкновенной положительной дроби.
  2. Отрицательной обыкновенной дроби.
  3. В виде числа нуль (0).

Иными словами, к рациональному число подойдет следующие определения:

  • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
  • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
  • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
  • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

Примеры рационального числа

Рассмотрим примеры рациональных чисел:

  • Натуральные числа — «4», «202», «200».
  • Целые числа — «-36», «0», «42».
  • Обыкновенные дроби.

Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными. Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

Общее понятие и определение иррационального числа

Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

Примеры иррационального числа

Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

  • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
  • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
  • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

Общее заключение и краткое сравнение между числами

Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

  1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
  2. Рациональное число представляет обыкновенную дробь.

Заключим нашу статью несколькими определениями:

  • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
  • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
  • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.

vchemraznica.ru

Рациональные и иррациональные числа

Ранее мы уже показали, что $1\frac25$ — близко к $\sqrt2$. Если бы оно точно равнялось $\sqrt2$, задача была бы решена. Тогда соотношение — $\frac{1\frac25}{1}$, которое можно превратить в соотношение целых чисел $\frac75$, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, $1\frac25$ не является точной величиной $\sqrt2$. Более точный ответ $1\frac{41}{100}$, дает нам соотношение $\frac{141}{100}$. Еще большей точности мы достигаем, когда приравниваем $\sqrt2$ к $1\frac{207}{500}$. В этом случае соотношение в целых числах будет равно $\frac{707}{500}$. Но и $1\frac{207}{500}$ не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение $\sqrt2$, но это им так и не удалось. Они не смогли представить соотношение $\frac{\sqrt2}{1}$ в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение $\sqrt2$ невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число $\frac{\sqrt2}{1}$ не может быть представлено в виде соотношения целых чисел, то и никакая дробь, содержащая $\sqrt2$, например $\frac{\sqrt2}{2}$ или $\frac{4}{\sqrt2}$ также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в $\frac{\sqrt2}{1}$, умноженное на какое нибудь число. Так $\frac{\sqrt2}{2}=\frac{\sqrt2}{1} \times \frac12$. Или $\frac{\sqrt2}{1} \times 2=2\frac{\sqrt2}{1}$, что можно преобразовать, умножив верхнюю и нижнюю части на $\sqrt2$, и получить $\frac{4}{\sqrt2}$. (Не следует забывать, что независимо от того, что представляет собой число $\sqrt2$, если мы умножим его на $\sqrt2$, то получим 2.)Поскольку число $\sqrt2$ нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа. С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными.

Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у чисел, входящих в ряд квадратных чисел. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, $\sqrt{1\frac79}$ является рациональным числом, так как $\sqrt{1\frac79}=\frac{\sqrt16}{\sqrt9}=\frac43$ или $1\frac13$ ( 4 — это корень квадратный из 16, а 3 — корень квадратный из 9).

Материалы по теме:

Поделиться с друзьями:

Загрузка...

matemonline.com

Действительные числа, рациональные числа и иррациональные числа

В ходе изучения математики мы сталкивались с различными числами.

Натуральные числа

Числа, используемые при счете называются натуральными числами. Например, $1,2,3$ и т.д. Натуральные числа образуют множество натуральных чисел, которое обозначают $N$ .Данное обозначение исходит от латинского слова naturalis- естественный.

Противоположные числа

Определение 1

Если два числа отличаются только знаками, их называют в математике противоположными числами.

Например, числа $5$ и $-5$ противоположные числа, т.к. отличаются только знаками.

Замечание 1

Для любого числа есть противоположное число, и притом только одно.

Замечание 2

Число нуль противоположно самому себе.

Целые числа

Определение 2

Целыми числами называют натуральные, противоположные им числа и нуль.

Множество целых чисел включает в себя множество натуральных и противоположных им.

Обозначают целые числа $Z.$

Дробные числа

Числа вида $\frac{m}{n}$ называют дробями или дробными числами. Так же дробные числа можно записывать десятичной форме записи, т.е. в виде десятичных дробей.

Например:$\ \frac{3}{5}$ , $0,08$ и Т.Д.

Так же, как и целые, дробные числа могут быть как положительными, так и отрицательными.

Рациональные числа

Определение 3

Рациональными числами называется множество чисел, содержащее в себе множество целых и дробных чисел.

Любое рациональное число, как целое, так и дробное можно представить в виде дроби $\frac{a}{b}$, где $a$- целое число, а $b$- натуральное.

Таким образом, одно и то же рациональное число можно записать разными способами.

Например,

Отсюда видно, что любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби.

Множество рациональных чисел обозначается $Q$.

В результате выполнения любого арифметического действия над рациональными числами полученный ответ будет рациональным числом. Это легко доказуемо, в силу того, что при сложении, вычитании, умножении и делении обыкновенных дробей получится обыкновенная дробь

Иррациональные числа

В ходе изучения курса математики часто приходится сталкиваться в решении с числами, которые не являются рациональными.

Например, чтобы убедиться в существовании множества чисел, отличных от рациональных решим уравнение $x^2=6$.Корнями этого уравнения будут числа $\surd 6$ и -$\surd 6$. Данные числа не будут являться рациональными.

Так же при нахождении диагонали квадрата со стороной $3$ мы применив теорему Пифагора получим, что диагональ будет равна $\surd 18$. Это число также не является рациональным.

Такие числа называются иррациональными.

Итак, иррациональным числом называют бесконечную десятичную непериодическую дробь.

Одно из часто встречающихся иррациональных чисел- это число $\pi $

При выполнении арифметических действий с иррациональными числами получаемый результат может оказаться и рациональным, так и иррациональным числом.

Докажем это на примере нахождения произведения иррациональным чисел. Найдем:

  1. $\ \sqrt{6}\cdot \sqrt{6}$

  2. $\ \sqrt{2}\cdot \sqrt{3}$

Решениею

  1. $\ \sqrt{6}\cdot \sqrt{6} = 6$

  2. $\sqrt{2}\cdot \sqrt{3}=\sqrt{6}$

На этом примере видно, что результат может оказаться как рациональным, так и иррациональным числом.

Если в арифметических действиях участвуют рациональное и иррациональные числа одновременно, то в результате получится иррациональное число ( кроме, конечно, умножения на $0$).

Действительные числа

Множеством действительных чисел называется множество содержащее множество рациональных и иррациональных чисел.

Обозначается множество действительных чисел $R$. Символически множество действительных чисел можно обозначить $(-?;+?).$

Мы говорили ранее о том, что иррациональным числом называют бесконечную десятичную непериодическую дробь, а любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби, поэтому действительным числом будет являться любая конечная и бесконечная десятичная дробь.

При выполнении алгебраических действий будут выполняться следующие правила

  1. при умножении и делении положительных чисел полученное число будет положительным
  2. при умножении и делении отрицательных чисел полученное число будет положительным
  3. при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Также действительные числа можно сравнивать друг с другом.

spravochnick.ru

Рациональные и иррациональные числа - Магия математики: Как найти x и зачем это нужно - Артур Бенджамин - rutlib5.com

Рациональные и иррациональные числа

Возможно, теоремы, которые мы только что рассмотрели, ничем вас не удивили, а их доказательства показались вам весьма прямолинейными. Куда большее удовольствие получаешь, пытаясь подтвердить менее очевидные предположения. Пока что мы довольствовались целыми числами – не пора ли заняться дробями? Число, которое можно представить в дробном виде, называется рациональным. Если быть точным, то число r является рациональным, если r = a/b, где a и b – целые числа, а b ≠ 0. Например, 23/58, –22/7 или 42 (равное, по сути, 42/1) – числа рациональные. Если же число не является рациональным, его называют иррациональным. Яркий тому пример, о котором вы, наверняка, слышали – число π = 3,14159…, но о нем чуть позже, в главе 8.

Для следующей нашей теоремы не лишним будет вспомнить, как вообще складывать дроби. И легче всего это делать, когда дроби имеют общий знаменатель, например:

 

 

В противном случае нам сперва придется привести дроби к общему знаменателю:

 

 

В целом же дроби a/b и c/d можно привести к общему знаменателю таким вот нехитрым способом:

 

 

И этого вполне достаточно, чтобы доказать несколько простых теорем, связанных с рациональными числами.

Теорема: Среднее арифметическое двух рациональных чисел также будет рациональным числом.

Доказательство: Возьмем два рациональных числа – x и y. Значит, в равенствах x = a/b и y = c/d значения a, b, c и d суть целые числа. Среднее арифметическое x и y, таким образом, можно представить как

 

 

Это дробь, числитель и знаменатель которой – целые числа. Следовательно, среднее арифметическое значение x и y является рациональным числом.

А теперь давайте подумаем, что же именно утверждается в этой теореме. А утверждается в ней то, что между двумя разными рациональными числами, насколько бы близки они друг другу ни были, всегда найдется еще одно рациональное число. Возникает искушение сделать из этого вывод, что все числа являются рациональными (как довольно долго думали древние греки). Нет, это не так. И смотрите, почему. Возьмем число √2, которое в десятичной записи выглядит как 1,4142… Если мы попробуем записать его как обычную дробь, получится что-нибудь вроде 10/7 или 1414/1000 (вариантов огромное множество), но все они будут приблизительными и никогда при возведении в квадрат не дадут 2. Но что, если мы просто плохо ищем? Да нет, не плохо, и следующая наша теорема как раз и показывает, что любые такие поиски бесполезны по определению. Доказательство будет строиться от противного, как это обычно и бывает, когда разговор заходит об иррациональных числах. А заодно мы увидим, как сократить дробь до ее несократимого значения – того предела, когда у числителя и знаменателя остается только один общий делитель – 1.

Теорема:√2 есть иррациональное число.

Доказательство: Предположим обратное: √2 есть число рациональное. В таком случае существуют некие положительные целые числа a и b, для которых верно, что

√2 = a/b

где дробь a/b – несократимая. Возведя обе части уравнения в квадрат, получим

2 = a²/b²

или

a² = 2b²

что приводит нас к тому, что a² есть четное целое число. А если a² – четное, значит, четным является и a (по аналогии с недавним нашим доказательством того, что, если нечетное a умножить на само себя, результат будет также нечетным). То есть a = 2k, где k – целое число. Добавим это в свое уравнение и получим

(2k)² = 2b²

То есть

4k² = 2b²

что приводит нас к

b² = 2k²

и констатации того факта, что b² является четным числом. Значит, четным должно быть и b. Но постойте! Ведь при четных значениях как a, так и b дробь a/b никак не может быть несократимой! Это противоречит нашим исходным условиям. И завело нас в эту ловушку предположение, что √2 является рациональным числом. Поэтому нам не остается ничего иного, кроме как признать: число √2 – иррациональное.☺

Лично я нахожу это доказательство восхитительным (и смайлик в конце строки тому подтверждение): прямая и хорошо освещенная тропа чистой, ничем не замутненной логики приводит нас к удивительному умозаключению. В главе 12 мы еще увидим, насколько велик на самом деле процент иррациональных чисел. Практически все действительные числа являются иррациональными, притом, что в повседневной жизни мы с ними почти не сталкиваемся.

Из доказанной нами только что теоремы следует одно любопытное заключение (его, пожалуй, даже можно назвать сопутствующей теоремой – такой, условия которой вытекают из только что доказанной). Основано оно на следующем правиле возведения в степень, согласно которому для любых положительных значений a, b и c

(ab)c = abc

То есть утверждение, что (5³)² = 56, будет вполне справедливым, потому что

(5³)² = (5 × 5 × 5) × (5 × 5 × 5) = 56

Сопутствующая теорема: Существуют иррациональные числа a и b, при которых число ab будет рациональным.

Не пугайтесь, нам эта теорема вполне по плечу, хоть мы и знаем пока лишь одно иррациональное число – √2. Приведенное ниже доказательство является, по сути, доказательством существования: мы же пытаемся просто узнать, есть ли вообще такие a и b, а не определить их конкретные числовые выражения.

Доказательство: Раз уж мы знаем, что √2 является иррациональным числом, возьмем число Будет ли оно рациональным? Если да, то теорема доказана (поскольку и a и b равны √2). Если нет – что ж, по крайней мере мы узнаем еще одно иррациональное число примем и с помощью правила возведения в степень получим

 

 

то есть рациональное число. Следовательно, независимо от того, является рациональным или иррациональным числом, мы докажем, что ab будет рациональным числом при иррациональных значениях a и b.☺ Так обычно и выглядит любое доказательство существования чего бы то ни было: почти всегда остроумно и очень редко – исчерпывающе. (Кстати, уж коли зашла речь: число  – все-таки иррациональное число, но сейчас это для нас абсолютно не принципиально.)

Куда больше удовлетворения (равно как и куда больше существенной информации) получаешь, идя путем конструктивного доказательства. Одно из них, к примеру, – доказательство того, что любое рациональное число a/b либо вовсе не имеет цифр после запятой, либо эти цифры повторяются (иными словами, в затянувшемся делении b раз за разом становится делителем того числа, что уже делилось). Но будет ли верным обратное? Само собой, конечная десятичная дробь должна быть рациональным числом. Например, 0,12358 = 12 358/100 000. А если эта дробь – допустим, 0,123123123… – периодическая? Должна ли она быть рациональным числом? Ответ – да, и вот вам очень элегантный способ это доказать. А заодно и найти это самое число. Обозначим искомое буквой w (как в английском слове waltz, которое означает «проще простого»), то есть

w = 0,123123123…

Умножим обе части на 1000:

1000w =123,123123123…

вычтем первое уравнение из второго:

999w = 123

и получим

 

 

Возьмем еще одну периодическую десятичную дробь, но на этот раз такую, в которой цикл повторения начинается не с первой после запятой цифры, а чуть позже.

Какой обычной дроби будет соответствовать десятичная 0,83333…? Начнем с

х = 0,83333…

Затем сделаем так:

100x = 83,3333…

и так:

10x = 8,3333…

При вычитании 10x из 100x все, что стоит после запятой, отсекается, оставляя нас с

90x = (83,3333…) – (8,3333…) = 75

Значит,

 

 

Этот алгоритм позволяет нам с определенной долей уверенности утверждать, что число будет рациональным тогда и только тогда, когда его представление в виде десятичной дроби является либо конечным, либо периодическим. Иррациональной же будет та дробь, которая после запятой имеет бесконечное количество знаков, не образуюющих при этом цикл, например,

v = 0,123456789101112131415…

Отправить

Сема

Ряды Тейлора не правильно записаны

Ola

опечамка 1 + 3 + 5 + 7 + 9 = 25 , а не 52

© RuTLib.com 2015-2016

rutlib5.com

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Арифметика

Рациональные и иррациональные числа. Понятие о вещественных числах

      Целые числа и рациональные дроби (простые дроби и смешанные числа) составляют множество рациональных чисел, которое принято обозначать буквой   Q .

      Каждое из рациональных чисел можно представить в виде

,

где   m   – целое число, а   n   – натуральное число.

      При обращении рациональных дробей в десятичные дроби получаются конечные и бесконечные периодические десятичные дроби.

      Числа

и т.п. являются примерами иррациональных чисел.

      Иррациональные числа нельзя представить в виде дроби, числитель которой является целым числом, а знаменатель натуральным числом.

      При обращении иррациональных чисел в десятичные дроби получаются бесконечные непериодические десятичные дроби. Множество иррациональных чисел бесконечно.

      Множество рациональных и иррациональных чисел составляют множество вещественных (действительных) чисел.

      Множество вещественных чисел обозначают буквой   R .  

Иррациональность числа

      Проведем доказательство иррациональности числа методом «от противного». С этой целью предположим, что число является рациональным числом. Тогда существует дробь вида

,

удовлетворяющая равенству

и такая, у которой числитель и знаменатель являются натуральными числами, не имеющими простых общих делителей.

      Используя данное равенство, получаем:

      Отсюда вытекает, что число   m2 является четным числом, а, значит, и число   m   является четным числом. Действительно, если мы предположим противное, т.е. предположим, что число   m   является нечетным числом, то найдется такое целое число   k ,   которое удовлетворяет соотношению

m = 2k + 1 .

Следовательно,

m2 = (2k + 1)2 == 4m2 + 4k +1 ,

т.е.   m   является нечетным числом. Полученное противоречие доказывает, что число   m   является четным числом. Значит, найдется такое целое число   k ,  которое удовлетворяет соотношению

m = 2k .

      Поэтому,

      Отсюда вытекает, что число   n2 является четным, а, значит, и число   n   является четным числом.

      Итак, число   m   является четным, и число   n   является четным, значит, число   2   является общим делителем числителя и знаменателя дроби

.

      Полученное противоречие доказывает, что несократимой дроби, удовлетворяющей соотношению

не существует. Следовательно, число  является иррациональным числом, что и требовалось доказать.

Десятичные приближения иррациональных чисел с недостатком и с избытком

      Разберем понятие десятичных приближений иррациональных чисел с недостатком и с избытком на конкретном примере. Для этого рассмотрим иррациональное число

      Это число, как и любое другое иррациональное число, изображается бесконечной непериодической  десятичной дробью.

      Последовательностью десятичных приближений числа с недостатком называют последовательность конечных десятичных дробей, которая получится, если у числа отбросить все десятичные знаки, начиная, сначала с первого десятичного знака, затем со второго десятичного знака, потом с третьего десятичного знака и т.д.

      Если последний десятичный знак каждого десятичного приближения числа с недостатком увеличить на   1 ,   то получится десятичное приближение числа с избытком.

      Само число располагается между каждым своим приближением с недостатком и соответствующим ему приближением с избытком.

      Для числа возникающая бесконечная последовательность десятичных приближений с недостатком и с избытком, имеет следующий вид:

и т.д.

      Точно также можно построить последовательность десятичных приближений с недостатком и с избытком для любого иррационального числа.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Иррациональные числа: определение, примеры

Иррациональные числа известны людям с глубокой древности. Еще за несколько веков до нашей эры индийский математик Манава выяснил, что квадратные корни некоторых чисел (например, 2) невозможно выразить явно.

Данная статья является своего рода вводным уроком в тему "Иррациональные числа". Приведем определение и примеры иррациональных чисел с пояснением, а также выясним, как определить, является ли данное число иррациональным.

Иррациональные числа. Определение

Само название "иррациональные числа" как бы подсказывает нам определение. Иррациональное число - это действительное число, которое не является рациональным. Другими словами, такое число нельзя представить в виде дроби mn, где m - целое, а n - натуральное число.

Определение. Иррациональные числа

Иррациональные числа - это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби.

Для обозначения множества иррациональных чисел используется символ 𝕀. 

𝕀=ℝ\ℚ - это значит, что множество иррациональных есть разность множеств вещественных и рациональных чисел.

В виде бесконечных и непериодических десятичных дробей иррациональные числа встречаются довольно редко. Чаще всего мы имеем дело с иррациональными числами в форме степеней, корней и логарифмов.

Самые известные иррациональные числа:

  1. 2=1,414213..
  2. Число пи π=3,141592..
  3. Основание натурального логарифма e=2,718281..
  4. Золотое число φ=1+52=1,618033

 Как определить, является ли число иррациональным?

Если мы имеем дело с представлением числа в виде некоторого математического выражения, то определить, иррационально ли оно, бывает достаточно проблематично.

Как понять,

www.zaochnik.com

Иррациональные числа. Сравнение иррациональных и рациональных чисел.

Иррациональные числа. Числа целые, дробные, десятичные конечные и десятичные периодические носят общее название рациональных чисел; десятичные бесконечные дроби непериодические называются иррациональными числами2). Первые служат мерою величин, соизмеримых с единицею, вторые—мерою величин, несоизмеримых с единицею.

Иррациональное число считается известным (или данным), если указан способ, посредством которого можно находить любое число его десятичных знаков.

Два иррациональных числа (как и два рациональных) считаются равными, если они произошли от измерения одною и тою же единицею двух равных величин; из двух неравных чисел то считается большим, которое произошло от измерения большей величины. Две равные величины, конечно, должны содержать в себе одинаковое число целых единиц, одинаковое число десятых долей, одинаковое число сотых долей и т. п., поэтому равные иррациональные числа должны быть выражены одинаковыми цифрами3). Большая же величина должна содержать в себе большее число целых или — при равенстве целых—большее число десятых, или — при равенстве целых и десятых — большее число, сотых и т. д. Напр., число 2,745037... больше числа 2,745029..., так как в первом 6-я цифра выражает число большее, чем 6-я цифра во втором, при тождественности всех предыдущих цифр.

Иррациональные числа могут быть положительными и отрицательными, смотря по тому, измеряют ли они величины, считаемые положительными, или величины, считаемые отрицательными.

186. Приближенные значения иррационального числа. Пусть нам дано какое-нибудь иррациональное число α 4), т. е. пусть указан способ, посредством которого мы можем получить сколько угодно цифр числа α (этим способом может быть, напр., то правило, посредством которого мы находим приближенные квадратные корни с точностью до 1/10 до 1/100 до 1/1000 и т. д.). Положим, мы нашли такие 5 цифр числа α:

α = 1,4142...

Возьмем из этих цифр несколько первых, напр, цифры 1,41, а остальные отбросим. Тогда мы получим приближенное значение числа α, причем это значение будет с недостатком, так как 1,41 < α. Если последнюю из удержанных нами цифр увеличим на 1, т. е. вместо 1,41 возьмем 1,42, то получим тоже приближенное значение числа α, но с избытком. Обыкновенно из двух приближенных значений, из которых одно с недостатком, другое с избытком, берут значение с недостатком, если первая из отброшенных цифр менее 5, и значение с избытком, если эта цифра больше 5.

187. Определение действий над иррациональными числами. Пусть α и β будут какие-нибудь данные положительные иррациональные числа. Если эти числа даны, то это значит, что мы можем найти их приближенные значения с любою точностью. Пусть, напр., приближенные значения чисел α и β, взятые с недостатком, будут такие (мы берем приближенные значения √3 и √2 ):

  до 0,1 до 0,01 до 0,001 до 0,0001
для числа α ..... 1,7 1,73 1,732 1,7320
для числа β ..... 1,4 1,41 1,414 1,4142

(Соответствующие приближенные значения с избытком получаются из этих чисел посредством усиления последнего десятичного знака на 1.)

Тогда: а) сложить α и β значит найти число, которое было бы

больше каждой из сумм: 1,7 + 1,1 . . . . =3,1 1,73 + 1,41 . . . =3,14 1,732+1,414 . . .=3,146 1,7320+1,4142 . . =3,1462 и меньше каждой из сумм: 1,8+1,6. . . . =3,3 1,74+1,42. . . =3,16 1,733 + 1,415 . . =3,146 1,7321 + 1,4143 . .=3,1464

т. е. сложить числа α и β — значит найти такое третье число, которое было бы больше суммы любых приближенных их значении, взятых с недостатком, но меньше суммы любых приближенных значении, взятых с избытком.

б) Беря приближенные значения чисел α и β, указанные сейчас, мы можем сказать, что произведение α β есть число, которое

больше каждого из произв.: 1,7•1,4......... =2,38 1,73 • 1,41.......=2,4393 1,732•1,114......=2,449048 1,7320 • 1,1142...=2,44939440 и меньше каждого из произв.: 1,8•1,5..........=2,70 1,74 • 1,42.......=2,4708 1,733•1,415......=2,452195 1,7321 • .1,4143 ...=2,44970903

т. е. перемножить числа α и β — значит найти такое третье число, которое было бы больше произведения их любых приближенных значений, взятых с недостатком, но меньше произведения их любых приближенных значений, взятых с избытком.

в) Возвысить иррациональное число α во вторую, третью, четвертую и т. д. степени — значит найти произведение, составленное из двух, трех, четырех и т. д. сомножителей, равных α.

г) Обратные действия определяются для иррациональных чисел так же, как и для рациональных; так, вычесть из числа α число β значит найти такое число х, чтобы сумма β + х равнялась α, и т. п.

Если одно из чисел α или β будет рациональное, то в указанных определениях прямых действий вместо приближенных значений такого числа можно брать точное число.

Произведение иррационального числа на нуль принимается, как и для чисел рациональных, равным нулю.

Действия над отрицательными иррациональными числам и производятся согласно правилам, данным для рациональных отрицательных чисел.

При более обстоятельном рассмотрении можно установить, что действия над иррациональными числами обладают теми же свойствами, какие принадлежат действиям над числами рациональными; напр., сумма и произведение обладают свойствами переместительным и сочетательным; произведение и деление, кроме того, обладают еще распределительным свойством. Свойства, выражаемые неравенствами, также сохраняются у чисел иррациональных; так, если α > β, то α + γ > β, αγ > βγ (если γ > 0) и αγ < βγ (если γ < 0) и т. п.

 

Действительные числа (R), их представление в виде десятичных дробей.

 

Еще древние греки обнаружили, что не всегда длину точно заданного отрезка можно выразить с помощью рационального числа. Например, если задан квадрат, длины сторон которого имеют длину, заданную рациональным числом, то какова длина его диагонали? Диагональ можно нарисовать точно, но невозможно выразить ее длину с помощью рационального числа. Такие отрезки называли несоизмеримыми. Однако, греками была разработана теория отношения отрезков, учитывая, что они могут быть несоизмеримы.

Современная математика использует в этом случае понятие иррационального числа.

Иррациональное число – число, которое не может быть представлено ни в виде дроби с целым числителем и знаменателем, ни в виде бесконечной периодичной десятичной дроби. Иррациональные числа могут быть представлены только бесконечными непериодическими дробями.

Примеры иррациональных чисел:

- это иррациональное число. = 1, 41…

е = 2,718281828459045…

Действительное числа, вещественное число – это любое рациональное или иррациональное число.

Примеры действительных чисел: 3/5; 1,8; 7,121212…; ….

 

 

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru