Как разложить квадратный трёхчлен на множители? Разложить уравнение квадратное


Formuly_sokrashchennogo_umnozhenija_shpargalka

Формулы сокращенного умножения

Разность квадратов:;

Квадрат суммы:;

Квадрат разности:;

Сумма кубов: ;

Разность кубов:;

Куб суммы:;

Куб разности:;

Квадрат трехчлена:.

Замечание: Формулы в прямом прочтении дают сокращенное умножение многочленов или возведение их в степень. В обратном прочтении – разложение многочлена на множители.

Формула разложения квадратного трехчлена на множители

Следует помнить, что квадратный многочлен можно разложить на множители, если у него есть действительные корни, т. е. . При этом надо обратить особое внимание, что если, то формула будет иметь вид:

,

и Вы скорее всего не заметили формулу полного квадрата двучлена (квадрат суммы или квадрат разности).

Стоит так же помнить, что если , то квадратный трехчлен на множители не раскладывается. Так, например, не стоит пытаться разложить на множители неполный квадрат суммы или разности (второй множитель формул суммы и разности кубов):.

Формулы корней квадратного уравнения

Общий вид квадратного уравнения:.

Дискриминант квадратного уравнения: .

Если , то квадратное уравнение действительных корней не имеет.

Если , то квадратное уравнение имеет одни действительный корень кратности два, который находится по формуле:.

Если , то квадратное уравнение имеет два действительных корня, которые находятся по формулам:.

Формулы корней квадратного уравнения с четным вторым коэффициентом.

Общий вид уравнения:.

Дискриминант:.

Условия существования корней прежние, т. е..

Корни:.

Теорема Виета.

Квадратное уравнение называется приведенным, если его старший коэффициент равен 1. Любое квадратное уравнение можно привести, разделив обе его части на старший коэффициент.

Общий вид приведенного квадратного уравнения: .

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение равно свободному члену.

Верна и обратная теорема.

studfiles.net

Разложение квадратного трехчлена на множители с помощью теоремы Виета - решения.егэцентр.рф

Разложение квадратного трехчлена на множители может пригодится при решении неравенств из задачи С3 или задачи с параметром С5. Так же многие текстовые задачи B13 решатся значительно быстрее, если вы владеете теоремой Виета.

Эту теорему, конечно, можно рассматривать с позиций 8-го класса, в котором она впервые проходится. Но наша задача — хорошо подготовиться к ЕГЭ и научиться решать задания экзамена максимально эффективно. Поэтому в этом уроке рассмотрен подход немного отличный от школьного.

Формулу корней уравнения по теореме Виета знают (или хотя бы видели) многие:

$$x_1+x_2 = -\frac{b}{a}, \quad x_1 · x_2 = \frac{c}{a},$$

где `a, b` и `c` — коэффициенты квадратного трехчлена `ax^2+bx+c`.

Чтобы научиться легко пользоваться теоремой, давайте поймем, откуда она берется (так будет реально легче запомнить).

Пусть перед нами есть уравнение `ax^2+ bx+ с = 0`. Для дальнейшего удобства разделим его на `a` получим `x^2+\frac{b}{a} x + \frac{c}{a} = 0`. Такое уравнение называется приведенным квадратным уравнением.

Важная мысль урока: любой квадратный многочлен, у которого есть корни, можно разложить на скобки. Предположим, что наш можно представить в виде `x^2+\frac{b}{a} x + \frac{c}{a} = (x + k)(x+l)`, где `k` и `l` — некоторые константы.

Посмотрим, как раскроются скобки:

$$(x + k)(x+l) = x^2 + kx+ lx+kl = x^2 +(k+l)x+kl.$$

Таким образом, `k+l = \frac{b}{a}, kl = \frac{c}{a}`.

Это немного отличается от классической трактовки теоремы Виета — в ней мы ищем корни уравнения. Я же предлагаю искать слагаемые для разложения на скобки — так не нужно помнить про минус из формулы (имеется в виду `x_1+x_2 = -\frac{b}{a}`). Достаточно подобрать два таких числа, сумма которых равна среднему коэффициенту, а произведение — свободному члену.

Если нам нужно решение именно уравнения, то оно очевидно: корни `x=-k`или `x=-l` (так как в этих случаях одна из скобок занулится, значит, будет равно нулю и все выражение).

На примере покажу алгоритм, как раскладывать квадратный многочлен на скобки.

Пример первый. Алгоритм разложения квадратного трехчлена на множители

Путь у нас есть квадртаный трехчлен `x^2+5x+4`.

Он приведенный (коэффициент у `x^2` равен единице). Корни у него есть. (Для верности можно прикинуть дискриминант и убедиться, что он больше нуля.)

Дальнейшие шаги (их нужно выучить, выполнив все тренировочные задания):

  1. Выполнить следующую запись: $$x^2+5x+4=(x \ldots)(x \ldots).$$ Вместо точек оставьте свободное место, туда будем дописывать подходящие числа и знаки.
  2. Рассмотреть все возможные варианты, как можно разложить число `4` на произведение двух чисел. Получим пары "кандидатов" на корни уравнения: `2, 2` и `1, 4`.
  3. Прикинуть, из какой пары можно получить средний коэффициент. Очевидно, что это `1, 4`.
  4. Записать $$x^2+5x+4=(x \quad 4)(x \quad 1)$$.
  5. Следующий этап — расставить знаки перед вставленными числами.

    Как понять и навсегда запомнить, какие знаки должны быть перед числами в скобках? Попробуйте раскрыть их (скобки). Коэффициент перед `x` в первой степени будет `(± 4 ± 1)` (пока что знаков мы не знаем — нужно выбрать), и он должен равняться `5`. Очевидно, что здесь будут два плюса $$x^2+5x+4=(x + 4)(x + 1)$$.

    Выполните эту операцию несколько раз (привет, тренировочные задания!) и больше проблем с этим не будет никогда.

Если нужно решить уравнение `x^2+5x+4`, то теперь его решение не составит труда. Его корни: `-4, -1`.

Пример второй. Разложение на множители квадратного трехчлена с коэффициентами различных знаков

Пусть нам нужно решить уравнение `x^2-x-2=0`. Навскидку дискриминант положительный.

Идем по алгоритму.

  1. $$x^2-x-2=(x \ldots ) (x \ldots).$$
  2. Разложение двойки на целые множители есть только одно: `2 · 1`.
  3. Пропускаем пункт — выбирать не из чего.
  4. $$x^2-x-2=(x \quad 2) (x \quad 1).$$
  5. Произведение наших чисел отрицательное (`-2` — свободный член), значит, одно из них будет отрицательное, а другое — положительное. Поскольку их сумма равна `-1` (коэффициент при `x`), то отрицательным будет `2` (интуитивное объяснение — двойка большее из двух чисел, оно сильнее "перетянет" в отрицательную сторону). Получим $$x^2-x-2=(x - 2) (x + 1).$$

Третий пример. Разложение квадратного трехчлена на множители

Уравнение `x^2+5x -84 = 0`.

  1. $$x+ 5x-84=(x \ldots ) (x \ldots).$$
  2. Разложение 84 на целые множители: `4· 21, 6· 14, 12· 7, 2·42`.
  3. Поскольку нам нужно, чтобы разница (или сумма) чисел равнялась 5, то нам подойдет пара `7, 12`.
  4. $$x+ 5x-84=(x\quad 12) (x  \quad 7).$$
  5. $$x+ 5x-84=(x + 12) (x  - 7).$$

Надеюсь, разложение этого квадратного трехчлена на скобки понятно.

Если нужно решение уравнения, то вот оно: `12, -7`.

 

Задания для тренировки

Предлагаю вашему вниманию несколько примеров, которые легко решаются с помощью теоремы Виета. (Примеры взяты из журнала "Математика", 2002.)

  1. `x^2+x-2=0`
  2. `x^2-x-2=0`
  3. `x^2+x-6=0`
  4. `x^2-x-6=0`
  5. `x^2+x-12=0`
  6. `x^2-x-12=0`
  7. `x^2+x-20=0`
  8. `x^2-x-20=0`
  9. `x^2+x-42=0`
  10. `x^2-x-42=0`
  11. `x^2+x-56=0`
  12. `x^2-x-56=0`
  13. `x^2+x-72=0`
  14. `x^2-x-72=0`
  15. `x^2+x-110=0`
  16. `x^2-x-110=0`
  17. `x^2+x-420=0`
  18. `x^2-x-420=0`

Спустя пару лет после написания статьи появился сборник из 150 заданий для разложения квадратного многочлена по теореме Виета.

Ставьте лайки и задавайте вопросы в комментариях!

xn--e1aajtm3cwc.xn--c1adb6aplz9c.xn--p1ai

Как разложить квадратный трёхчлен на множители?

Правильный вариант решенияМир погружён в огромное количество чисел. Любые исчисления происходят с их помощью.

Люди учат цифры для того, чтобы в дальнейшей жизни не попадаться на обман. Необходимо уделять огромное количество времени, чтобы быть образованным и рассчитать собственный бюджет.

Математика — это точная наука, которая играет большую роль в жизни. В школе дети изучают цифры, а после, действия над ними.

Действия над числами бывают совершенно разными: умножение, разложение, добавление и прочие. Помимо простых формул, в изучении математики используют и более сложные действия. Существует огромное количество формул, по которым узнают любые значения.

Это интересно: разность векторов, определение разности.

В школе, как только появляется алгебра, в жизнь школьника добавляются формулы упрощения. Бывают уравнения, когда неизвестных числа два, но найти простым способом не получится. Трёхчлен — соединение трёх одночленов, с помощью простого метода отнимания и добавления. Трёхчлен решается с помощью теоремы Виета и дискриминанта.

Формула разложения квадратного трёхчлена на множители

Существуют два правильных и простых решения примера:

  • дискриминант;
  • теорема Виета.

Квадратный трёхчлен имеет неизвестный в квадрате, а также число без квадрата. Первый вариант для решения задачи использует формулу Виета. Это простая формула, если цифры, что стоят перед неизвестным, будут минимальным значением.

Для других уравнений, где число стоит перед неизвестным, уравнение необходимо решать через дискриминант. Это более сложное решение, но используют дискриминант намного чаще, нежели теорему Виета.

Изначально, для нахождения всех переменных уравнения необходимо возвести пример к 0. Решение примера можно будет проверить и узнать правильно ли подстроены числа.

Это интересно: умножение на 0 – правило для любого числа.

Дискриминант

1. Необходимо приравнять уравнение к 0.

Приравнивание к 0

2. Каждое число перед х будет названо числами a, b, c. Так как перед первым квадратным х нет числа, то оно приравнивается к 1.

Пример уравнения

3. Теперь решение уравнения начинается через дискриминант:

Пример решения

4. Теперь нашли дискриминант и находим два х. Разница заключается в том, что в одном случае перед b будет стоять плюс, а в другом минус:

Находимое значение х

5. По решению два числа получилось -2 и -1. Подставляем под первоначальное уравнение:

Два правильных варианта

6. В этом примере получилось два правильных варианта. Если оба решения подходят, то каждое из них является истинным.

Через дискриминант решают и более сложные уравнение. Но если само значение дискриминанта будет меньше 0, то пример неправильный. Дискриминант при поиске всегда под корнем, а отрицательное значение не может находиться в корне.

Это интересно: признак перпендикулярности прямой и плоскости, теория и практика.

Теорема Виета

Применяется для решения лёгких задач, где перед первым х не стоит число, то есть a=1. Если вариант совпадает, то расчёт проводят через теорему Виета.

Для решения любого трёхчлена необходимо возвести уравнение к 0. Первые шаги у дискриминанта и теоремы Виета не отличаются.

Приравнивание к 0

2. Теперь между двумя способами начинаются отличия. Теорема Виета использует не только «сухой» расчёт, но и логику и интуицию. Каждое число имеет свою букву a, b, c. Теорема использует сумму и произведение двух чисел.

Доказательство теоремы Виета

Запомните! Число b всегда при добавлении стоит с противоположным знаком, а число с остаётся неизменным!

Подставляя значения данные в примере, получаем:

Сумма и произведение

Это интересно: что такое разность в математике?

3. Методом логики подставляем наиболее подходящие цифры. Рассмотрим все варианты решения:

  1. Цифры 1 и 2. При добавлении получаем 3, но если умножить, то не получится 4. Не подходит.
  2. Значение 2 и -2. При умножении будет -4, но при добавлении получается 0. Не подходит.
  3. Цифры 4 и -1. Так как в умножении стоит отрицательное значение, значит, одно из чисел будет с минусом. При добавлении и умножении подходит. Правильный вариант.

4. Остаётся только проверить, раскладывая числа, и посмотреть правильность подобранного варианта.

Правильный вариант решения

5. Благодаря онлайн-проверке мы узнали, что -1 не подходит по условию примера, а значит является неправильным решением.

При добавлении отрицательного значения в примере, необходимо цифру заносить в скобки.

В математике всегда будут простые задачи и сложные. Сама наука включает в себя разнообразие задач, теорем и формул. Если понимать и правильно применять знания, то любые сложности с вычислениями будут пустяковыми.

Математика не нуждается в постоянном запоминании. Нужно научится понимать решение и выучить несколько формул. Постепенно, по логическим выводам, можно решать похожие задачи, уравнения. Такая наука может с первого взгляда показаться очень тяжёлой, но если окунутся в мир чисел и задач, то взгляд резко изменится в лучшую сторону.

Технические специальности всегда остаются самыми востребованными в мире. Сейчас, в мире современных технологий, математика стала незаменимым атрибутом любой сферы. Нужно всегда помнить о полезных свойствах математики.

Разложение трёхчлена с помощью скобки

Кроме решения привычными способами, существует ещё один — разложение на скобки. Используют с применением формулы Виета.

1. Приравниваем уравнение к 0.

ax 2 + bx+ c= 0

2. Корни уравнения остаются такими же, но вместо нуля теперь используют формулы разложения на скобки.

ax 2 + bx+ c = a ( x – x 1 ) ( x – x 2 )

3. Пример уравнения.

2 x 2 – 4 x – 6 = 2 ( x + 1 ) ( x – 3 )

4. Решение х=-1, х=3

obrazovanie.guru

Решение квадратных уравнений

Квадратным уравнением называется уравнение вида ax^2+bx+c=0, где a<>0 

a - коэффициент при  x^2, или старший коэффициент.

b - коэффициент при х, или второй коэффициент.

c - свободный член.

Например, в уравнении -x+3x^2-5=0  a=3, b=-1, c=-5.

B уравнении nx^2-(n-2)x+n^2-5=0  a=n, b=-(n-2), c=n^2-5

Если в квадратном уравнении b=0 или  c=0, то такое квадратное уравнение называется НЕПОЛНЫМ.

Неполное квадратное уравнение решается с помощью разложения на множители.

1. Если c=0, то нужно вынести за скобки общий множитель.

Например,

3x^2-5x=0

x(3x-5)=0

Приравняем каждый множитель к нулю:

x=0 или 3x-5=0

Ответ: {0,   {5/3}}

2. Если b=0, то нужно разложить на множители по формуле разности квадратов:

Например:

x^2-7=0

x^2-({sqrt{7}})^2=0

(x-sqrt{7})(x+sqrt{7})=0

Приравниваем каждый множитель  к нулю, получаем:

x=sqrt{7}  или x=-sqrt{7} 

Коротко это уравнение решается так:

x^2=7

x={pm}sqrt{7}

В этом месте важно не забыть знак pm перед корнем!

Ответ: {sqrt{7}, -sqrt{7}}

Если  в квадратном уравнении b<>0  и  c<>0 , то такое квадратное уравнение называется ПОЛНЫМ.

Полное квадратное уравнение решается с помощью нахождения ДИСКРИМИНТА.

Дискриминант квадратного уравнения ax^2+bx+c=0 вычисляется по формуле:

D=b^2-4ac.

Формулы для вычисления корней квадратного уравнения выглядят так:

x_1={-b+sqrt{D}}/{2a}

x_2={-b-sqrt{D}}/{2a}

В этих формулах дискриминант присутствует под знаком квадратного корня, поэтому

Eсли D<0, то квадратное уравнение не имеет действительных корней.

Если D>0, то квадратное уравнение имеет два различных действительных корня, которые можно найти по приведенным выше формулам.

Если D=0,  то квадратное уравнение имеет два совпадающих корня:

x_1=x_2=-{b/{2a}}.

Иногда  говорят, что в этом случае квадратное уравнение имеет один корень.

Итак, при решении квадратного уравнения удобно пользоваться таким алгоритмом:

1. Определяем, является ли квадратное уравнение полным, или неполным.

2. Если уравнение неполное, раскладываем левую часть на множители и приравниваем каждый множитель к нулю.

3. Если уравнение полное, то

  • находим дискриминант квадратного уравнения по формуле D=b^2-4ac
  • если дискриминант меньше нуля, то записываем, что квадратное уравнение не имеет действительных корней
  • если дискриминант равен нулю, то находим корни квадратного уравнения по формуле x_{12}=-{b/{2a}}
  • если дискриминант больше нуля, то находим корни квадратого уравнения по формулам:x_1={-b+sqrt{D}}/{2a}x_2={-b-sqrt{D}}/{2a}

Если коэффициент b  квадратного уравнения - четное число, то есть его можно записать как b=2m, или m=b/2 то для нахождения корней квадратного уравнения удобно пользоваться формулами для четного второго коэффициента:

D/4=m^2-ac

x_{12}={{-m}{pm}sqrt{D/4}}/a

Два полезных замечания:

1. Если для коэффициентов квадратного уравнения ax^2+bx+c=0 выполняется равенство a+b+c=0, то x_1=1x_2={c/a}

2. Если для коэффициентов квадратного уравнения ax^2+bx+c=0 выполняется равенство a+c=b, то x_1=-1x_2=-{c/a}

Эти свойства помогают устно решать некоторые громоздкие квадратные уравнения. Например, в квадратном уравнении 2012x^2-2011x-1=0 сумма коэффициентов равна 0, поэтому x_1=1,  x_2=-1/{2012}.

В уравнении 2012x^2+2013x+1=0 выполняется равенство a+c=b, поэтому x_1=-1,  x_2=-1/{2012}

Рассмотрим несколько примеров.

Решим квадратные уравнения:

1. 2x^2+5x+2=0

а) найдем дискриминант этого уравнения:

D=5^2-4*2*2=9

Дискриминант больше нуля, значит уравнение имеет два различных корня. sqrt{D}=sqrt{9}=3

б) Тогда: x_1={-5-3}/{2*2}={-8}/4=-2x_2={-5+3}/{2*2}={-2}/4=-{1/2}

Ответ:   {1; 1/2}

2.  5 x^2+25x+113=0

а) Найдем дискриминант этого уравнения:

D=(25)^2-4*5*113. Очевидно, что D<0 , и даже нет необходимости вычислять его точное значение.

Ответ: уравнение не имеет действительных корней.

3. 16x^2-8x+1=0

а) Найдем дискриминант этого уравнения:

D=(-8)^2-4*1*16=0

б) Так как D=0, уравнение имеет два совпадающих корня,

x_{12}=8/{32}=1/4

Если внимательно посмотреть на квадратный трехчлен, стоящий в левой части уравнения, то становится очевидно, то что его можно преобразовать по формуле квадрата разности к выражению

(4x-1)^2=0, отсюда x=1/4

Ответ: 1/4.

А теперь я предлагаю вам посмотреть видеоурок с решением квадратного уравнения:

{(x-3)^2}/{16}-{(x-2)^2}/{4}={1-x}/2

 

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Как разложить квадратное уравнение | Сделай все сам

Квадратным уравнением называют уравнение вида A · x? + B · x + C. Такое уравнение может иметь два корня, один корень, либо не иметь корней совсем. Дабы разложить квадратное уравнение на множители, применяют следствие из теоремы Безу либо примитивно пользуются готовой формулой.

Инструкция

1. Теорема Безу гласит: если многочлен P(x) поделить на двучлен (x-a), где a — некоторое число, то остатком от такого деления будет являться P(a) — численный итог подстановки числа a в начальный многочлен P(x).

2. Корнем многочлена именуется такое число, при подстановке которого в многочлен получается нуль. Выходит, если a является корнем многочлена P(x), то P(x) делится на двучлен (x-a) без остатка, т.к. P(a) = 0. А если многочлен делится на (x-a) без остатка, то его дозволено разложить на множители в виде: P(x) = k · (x-a), где k — определенный показатель.

3. Если обнаружить два корня квадратного уравнения — x1 и x2, то оно разложится по ним как:A · x? + B · x + C = A · (x-x1) · (x-x2).

4. Для поиска корней квадратного уравнения значимо помнить универсальную формулу:x(1,2) = [-B +/- ?(B^2 — 4 · A · C)] / 2 · A.

5. Если выражение (B^2 — 4 · A · C), называемое дискриминантом, огромнее нуля, то многочлен имеет два разных корня — x1 и x2. Если дискриминант (B^2 — 4 · A · C) = 0, то многочлен имеет один корень кратности два. По сути, он имеет те же два действительных корня, но они совпадают. Тогда многочлен разложится так:A · x? + B · x + C = A · (x-x0) · (x-x0) = A · (x-x0)^2.

6. Если дискриминант поменьше нуля, т.е. многочлен не имеет действительных корней, то разложить на множители такой многочлен нереально.

7. Дабы обнаружить корни квадратного многочлена, дозволено применять не только универсальную формулу, но также и теорему Виета:x1 + x2 = -B,x1 · x2 = C.Теорема Виета заявляет, что сумма корней квадратного трехчлена равна показателю при x, взятому с противоположным знаком, а произведение корней равно свободному показателю.

8. Обнаружить корни дозволено не только у квадратного многочлена, но и у биквадратного. Биквадратным многочленом называют многочлен вида A · x^4 + B · x^2 + C. Замените в заданном многочлене x^2 на y. Тогда вы получите квадратный трехчлен, тот, что, вновь же, дозволено разложить на множители:A · x^4 + B · x^2 + C = A · y^2 + B · y + C = A · (y-y1) · (y-y2).

jprosto.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Алгебра

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Квадратным трёхчленом относительно переменной   x   называют многочлен

где a, b и c – произвольные вещественные числа, причем Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Квадратным уравнением относительно переменной   x   называют уравнение

где a, b и c – произвольные вещественные числа, причем Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Полным квадратным уравнением относительно переменной   x   называют уравнение

ax2 + bx + c = 0,

где a, b и c – произвольные вещественные числа, отличные от нуля.

      Неполными квадратными уравнениями называют квадратные уравнения следующих типов:

Решение неполных квадратных уравнений

      Покажем, как решаются неполные квадратные уравнения на примерах.

      Пример 1. Решить уравнение

5x2 = 0 .

      Решение.

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Ответ: 0 .

      Пример 2. Решить уравнение

      Решение. Вынося в левой части уравнения (3) переменную   x   за скобки, перепишем уравнение в виде

      Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Ответ: Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета .

      Пример 3. Решить уравнение

2x2 – 5 = 0 .

      Решение.

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Ответ: Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета .

      Пример 4. Решить уравнение

      Решение. Поскольку левая часть уравнения (5) положительна при всех значениях переменной   x, а правая часть равна 0, то уравнение  решений не имеет.

      Ответ: Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета.

Выделение полного квадрата

      Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(6)

      Для того, чтобы получить формулу (6), совершим следующие преобразования:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Формула (6) получена.

Дискриминант

      Дискриминантом квадратного трёхчлена (1) называют число, которое обозначается буквой   D   и вычисляется по формуле:

      Дискриминант квадратного трёхчлена играет важную роль, и от того, какой знак он имеет, зависят различные свойства квадратного трёхчлена.

      Используя дискриминант, формулу (6) можно переписать в виде

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(8)

Разложение квадратного трёхчлена на множители

      Утверждение. В случае, когда Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета, квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда   D < 0, квадратный трехчлен нельзя разложить на линейные множители.

      Доказательство. В случае, когда   D = 0, формула (8) и является разложением квадратного трехчлена на линейные множители:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(9)

      В случае, когда   D > 0, выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись формулой сокращенного умножения «Разность квадратов»:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Таким образом, в случае, когда   D > 0, разложение квадратного трехчлена (1) на линейные множители имеет вид

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(10)

      В случае, когда  D < 0, выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

      Замечание. В случае, когда  D < 0, квадратный трехчлен всё-таки можно разложить на линейные множители, но только в области комплексных чисел, однако этот материал выходит за рамки школьного курса.

Формула для корней квадратного уравнения

      Из формул (9) и (10) вытекает формула для корней квадратного уравнения .

      Действительно, в случае, когда   D = 0, из формулы (9) получаем:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Следовательно, в случае, когда   D = 0, уравнение (1) обладает единственным корнем, который вычисляется по формуле

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(11)

      В случае, когда   D > 0, из формулы (10) получаем:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема ВиетаРешение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

      Таким образом, в случае, когда   D > 0, уравнение (1) имеет два различных корня, которые вычисляются по формулам

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(12)
Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(13)

      Замечание 1. Формулы (12) и (13) часто объединяют в одну формулу и записывают так:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(14)

      Замечание 2. В случае, когда   D = 0, обе формулы (12) и (13) превращаются в формулу (11). Поэтому часто говорят, что в случае, когда   D = 0, квадратное уравнение (1) имеет два совпавших корня, вычисляемых по формуле (11), а саму формулу (11) переписывают в виде:

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(15)

      Замечание 3. В соответствии с материалом, изложенным в разделе «Кратные корни многочленов», корень (11) является корнем уравнения (1) кратности 2.

      В случае, когда   D = 0, разложение квадратного трехчлена на линейные множители (9) можно переписать по-другому, воспользовавшись формулой (15):

ax2 + bx + c == a (x – x1)2.(16)

      В случае, когда   D > 0, разложение квадратного трехчлена на линейные множители (10) с помощью формул (12) и (13) переписывается так:

ax2 + bx + c == a (x – x1) (x – x2) .(17)

      Замечание 4. В случае, когда   D = 0, корни   x1 и   x2 совпадают, и формула (17) принимает вид (16).

Прямая и обратная теоремы Виета

      Раскрывая скобки и приводя подобные члены в правой части формулы (17), получаем равенство

ax2 + bx + c == a (x – x1) (x – x2) == a [x2 – (x1 + x2) x + x1x2] == ax2 – a(x1 + x2) x + ax1x2 .

      Отсюда, поскольку формула (17) является тождеством, вытекает, что коэффициенты многочлена

ax2 + bx + c

равны соответствующим коэффициентам многочлена

ax2 – a (x1 + x2) x + a x1x2 .

      Таким образом, справедливы равенства

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета

следствием которых являются формулы

Решение квадратных уравнений дискриминант разложение квадратного трехчлена на множители прямая и обратная теорема Виета(18)

      Формулы (18) и составляют содержание теоремы Виета (прямой теоремы Виета).

      Словами прямая теорема Виета формулируется так: - «Если числа   x1 и   x2 являются корнями квадратного уравнения (1), то они удовлетворяют равенствам (18)».

      Обратная теорема Виета формулируется так: - «Если числа   x1 и   x2 являются решениями системы уравнений (18), то они являются корнями квадратного уравнения (1)».

      Для желающих ознакомиться с примерами решений различных задач по теме «Квадратные уравнения» мы рекомендуем наше учебное пособие «Квадратный трехчлен».

      Графики парабол и решение с их помощью квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Решение квадратных уравнений, примеры, тесты. Особые случаи. Разложение квадратного трехчлена на множители. Теорема Виета прямая, обратная

Тестирование онлайн

Решение квадратных уравнений

Квадратным уравнением называется уравнение вида

a, b и c - числа, х - переменная

Для нахождения корней квадратного уравнения необходимо найти дискриминант по формуле

1) Если D>0, то уравнение имеет два корня, которые находятся по формулам

2) Если D=0, то уравнение имеет один корень, который находится по формуле

3) Если D, то уравнение не имеет корней.

Особые случаи

Неполное квадратное уравнение:

Решать неполное квадратное уравнение можно способом, описанным выше, но можно использовать простые методы решения

Разложение квадратного трехчлена на множители

Квадратный трехчлен с дискриминантом можно разложить на множители по формуле

Теорема Виета

Приведенное квадратное уравнение имеет вид

т.е. коэффициент a=1.

Если x1 и x2 - корни приведенного квадратного уравнения, то

Теорема, обратная теореме Виета

Если p, q, x1, x2 таковы, что

то x1, x2 - корни уравнения

fizmat.by