Что делать со степенями при сложении и вычитании числе? Разные основания одинаковые степени


Правила умножения степеней с разным основанием — Коллегия адвокатов

Как умножать степени

Как умножать степени? Какие степени можно перемножить, а какие — нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели — сложить:

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

Рассмотрим, как умножать степени, на конкретных примерах.

Единицу в показателе степени не пишут, но при умножении степеней — учитывают:

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом — умножение:

www.algebraclass.ru

Сложение, вычитание, умножение, и деление степеней

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 . Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или: 2a 4 — (-6a 4 ) = 8a 4 3h 2 b 6 — 4h 2 b 6 = -h 2 b 6 5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или: x -3 ⋅ a m = a m x -3 3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2 a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных. Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или: 4a n ⋅ 2a n = 8a 2n b 2 y 3 ⋅ b 4 y = b 6 y 4 (b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x — y). Ответ: x 4 — y 4 . Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 . (a 2 — y 2 )⋅(a 2 + y 2 ) = a 4 — y 4 . (a 4 — y 4 )⋅(a 4 + y 4 ) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac$. Но это равно a 2 . В ряде чисел a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 . любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $\frac= y$.

И a n+1 :a = a n+1-1 = a n . То есть $\frac = a^n$.

Или: y 2m : y m = y m 8a n+m : 4a m = 2a n 12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней. Результат деления a -5 на a -3 , равен a -2 . Также, $\frac : \frac = \frac.\frac= \frac= \frac$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac= h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac$ Ответ: $\frac$.

2. Уменьшите показатели степеней в $\frac$. Ответ: $\frac$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю. a 2 .a -4 есть a -2 первый числитель. a 3 .a -3 есть a 0 = 1, второй числитель. a 3 .a -4 есть a -1 , общий числитель. После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю. Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

www.math20.com

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1 Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение. b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени. 6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени. (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2 ) на 3 5 . Это понятно, если посчитать (3 3 + 3 2 ) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2 Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени (2b) 5 : (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

    = 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44Пример. Решить уравнение. Используем свойство частного степеней. 3 8 : t = 3 4

    Ответ: t = 3 4 = 81

    Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

      Пример. Упростить выражение. 4 5m + 6 · 4 m + 2 : 4 4m + 3 = 4 5m + 6 + m + 2 : 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    Пример. Найти значение выражения, используя свойства степени.

    = 2 11 − 5 = 2 6 = 64

    Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

    Нельзя заменять разность (4 3 −4 2 ) на 4 1 . Это понятно, если посчитать (4 3 −4 2 ) = (64 − 16) = 48 , а 4 1 = 4

    Свойство № 3 Возведение степени в степень

    При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

    (a n ) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.

    • Пример. (a 4 ) 6 = a 4 · 6 = a 24
    • Пример. Представить 3 20 в виде степени с основанием 3 2 .
    • По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

      Свойства 4 Степень произведения

      При возведении степени в степень произведения в эту степень возводится каждый множитель и результаты перемножаются.

      (a · b) n = a n · b n , где « a », « b » — любые рациональные числа; « n » — любое натуральное число.

    • Пример 1. (6 · a 2 · b 3 · c ) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
    • Пример 2. (−x 2 · y) 6 = ( (−1) 6 · x 2 · 6 · y 1 · 6 ) = x 12 · y 6

    Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

    (a n · b n )= (a · b) n

    То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить. 2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить. 0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

    Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Пример возведения в степень десятичной дроби.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Свойства 5 Степень частного (дроби)

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    (a : b) n = a n : b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней. (5 : 3) 12 = 5 12 : 3 12
  • Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    math-prosto.ru

    Степени и корни

    Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются :

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    ( a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р . ( 2 · 3 · 5 / 15 ) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:

    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р . a 4 : a 7 = a 4 — 7 = a — 3 .

    Если мы хотим, чтобы формула a m : a n = a m — n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы . 2 0 = 1, ( – 5 ) 0 = 1, ( – 3 / 5 ) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

    О выражениях, не имеющих смысла. Есть несколько таких выражений.

    где a ≠ 0 , не существует .

    В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x, т.e. a = 0, что противоречит условию: a ≠ 0

    — любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x, то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x, что и требовалось доказать.

    Если считать, что правила действий со степенями распространяются и на степени с нулевым основанием, то

    0 0 — любое число.

    Р е ш е н и е . Рассмотрим три основных случая:

    1) x = 0 – это значение не удовлетворяет данному уравнению

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    нашем случае x > 0 , ответом является x > 0 ;

    www.bymath.net

    Правила умножения степеней с разным основанием

    СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

    СТЕПЕННАЯ ФУНКЦИЯ IV

    § 69. Умножение и деление степеней с одинаковыми основаниями

    Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним, то есть

    Доказательство. По определению степени

    2 2 • 2 3 = 2 5 = 32; (—3) • (—3) 3 = (—3 ) 4 = 81.

    Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.

    Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п

    (a =/= 0)

    Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу

    Если т > п, то число т — п будет натуральным; следовательно, по теореме 1

    Теорема 2 доказана.

    Следует обратить внимание на то, что формула

    доказана нами лишь в предположении, что т > п. Поэтому из доказанного пока нельзя делать, например, таких выводов:

    К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 — 2 .

    Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним, то есть

    Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:

    что и требовалось доказать.

    Например, (2 3 ) 2 = 2 6 = 64;

    518 (Устно.) Определить х из уравнений:

    1) 2 • 2 2 • 2 3 • 2 4 • 2 5 • 2 6 = 2 x ; 3) 4 2 • 4 4 • 4 6 • 4 8 • 4 10 = 2 x ;

    2) 3 • 3 3 • 3 5 • 3 7 • 3 9 = 3 x ; 4) 1 /5 • 1 /25 • 1 /125 • 1 /625 = 1 / 5 x .

    519. (У с т н о.) Упростить:

    520. (У с т н о.) Упростить:

    521. Данные выражения представить в виде степеней с одинаковыми основаниями:

    1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;

    2) —1000 и 100; 4) —27 и —243; 6) 81 75 • 8 200 и 3 600 • 4 150 .

    oldskola1.narod.ru

    112ak.ru

    Свойства степени с одинаковыми основаниями.

    Понятие степени в математике вводится еще в 7 классе на уроке алгебры. И в дальнейшем на протяжении всего курса изучения математики это понятие активно используется в различных своих видах. Степени - достаточно трудная тема, требующая запоминания значений и умения правильно и быстро сосчитать. Для более быстрой и качественной работы со степенями математики придумали свойства степени. Они помогают сократить большие вычисления, преобразовать огромный пример в одно число в какой-либо степени. Свойств не так уж и много, и все они легко запоминаются и применяются на практике. Поэтому в статье рассмотрены основные свойства степени, а также то, где они применяются.

    Свойства степени

    Мы рассмотрим 12 свойств степени, в том числе и свойства степеней с одинаковыми основаниями, и к каждому свойству приведем пример. Каждое из этих свойств поможет вам быстрее решать задания со степенями, а так же спасет вас от многочисленных вычислительных ошибок.

    1-е свойство.

    а0 = 1

    Про это свойство многие очень часто забывают, делают ошибки, представляя число в нулевой степени как ноль.

    2-е свойство.

    а1 = а

    3-е свойство.

    аn * am = a(n+m)

    Нужно помнить, что это свойство можно применять только при произведении чисел, при сумме оно не работает! И нельзя забывать, что это, и следующее, свойства применяются только к степеням с одинаковыми основаниями.

    4-е свойство.

    an/am = a(n-m)

    Если в знаменателе число возведено в отрицательную степень, то при вычитании степень знаменателя берется в скобки для правильной замены знака при дальнейших вычислениях.

    Свойство работает только при делении, при вычитании не применяется!

    5-е свойство.

    (an)m = a(n*m)

    6-е свойство.

    a-n = 1/an

    Это свойство можно применить и в обратную сторону. Единица деленная на число в какой-то степени есть это число в минусовой степени.

    7-е свойство.

    (a*b)m = am * bm

    Это свойство нельзя применять к сумме и разности! При возведении в степень суммы или разности используются формулы сокращенного умножения, а не свойства степени.

    8-е свойство.

    (a/b)n = an/bn

    9-е свойство.

    а½ = √а

    Это свойство работает для любой дробной степени с числителем, равным единице, формула будет та же, только степень корня будет меняться в зависимости от знаменателя степени.

    Также это свойство часто используют в обратном порядке. Корень любой степени из числа можно представить, как это число в степени единица деленная на степень корня. Это свойство очень полезно в случаях, если корень из числа не извлекается.

    10-е свойство.

    (√а)2 = а

    Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.

    11-е свойство.

    n √an = a

    Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.

    12-е свойство.

    am/n = n √am

    Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.

    Применение степеней и их свойств

    Они активно применяются в алгебре и геометрии. Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики. Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять. Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу. Для удобства следует знать еще и значение чисел, возведенных в степень. Это сократит ваше время при решении, исключив необходимость долгих вычислений.

    Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.

    Формулы сокращенного умножения - еще один пример использования степеней. В них нельзя применять свойства степеней, они раскладываются по особым правилам, но в каждой формуле сокращенного умножения неизменно присутствуют степени.

    Так же степени активно используются в физике и информатике. Все переводы в систему СИ производятся с помощью степеней, а в дальнейшем при решении задач применяются свойства степени. В информатике активно используются степени двойки, для удобства счета и упрощения восприятия чисел. Дальнейшие расчеты по переводам единиц измерения или же расчеты задач, так же, как и в физике, происходят с использованием свойств степени.

    Еще степени очень полезны в астрономии, там редко можно встретить применение свойств степени, но сами степени активно используются для сокращения записи различных величин и расстояний.

    Степени применяют и в обычной жизни, при расчетах площадей, объемов, расстояний.

    С помощью степеней записывают очень большие и очень маленькие величины в любых сферах науки.

    Показательные уравнения и неравенства

    Особое место свойства степени занимают именно в показательных уравнениях и неравенствах. Эти задания очень часто встречаются, как в школьном курсе, так и на экзаменах. Все они решаются за счет применения свойств степени. Неизвестное всегда находится в самой степени, поэтому зная все свойства, решить такое уравнение или неравенство не составит труда.

    fb.ru

    Что делать со степенями при сложении и вычитании числе?

    Что делать со степенями при сложении и вычитании числе?

  • Если умножать степени с одинаковым основанием, то показатели степени складываются:

    Например: 2^2 х 2^4 = 2^6 = 64

    Если делить степени с одинаковым основанием, то показатели степени вычитаются:

    Например: 2^4 / 2^2 = 2^2 = 4.

    Если же умножать или делить степени с разным основанием, то нужно сначала возвести основание в степень, а потом совершать умножение или деление.

    В вашем случае 2^3 x 4^5 = 8 х 1024 = 8192.

  • При умножении степеней, которые имеют одинаковые основания - числа степеней складываются.

    При делении степеней, которые имеют одинаковые основания - числа степеней вычитаются.

    А вот если умножать, либо делить степени, которые имеют разные основания, нужно выполнить следующие действия:

    • возвести основание в степень
    • выполнить заданное умножение или деление.
  • На вашем примере нужно привести к одной основе, то есть 4 - это 2^2. Поэтому запишем выражение следующим образом 2^3 x 4^5 = 2^3 x (2^2)^5. Теперь нам нужно избавиться от этих скобочек. Мы знаем, что по правилу степени просто перемножаются, поэтому, у нас получится следующее выражение: 2^3 x 2^10. А теперь у нас есть единая основа, значит мы можем просто сложить степени. Получится такое выражение: 2^13. Ответ будет 8192.

    Итак, на представленном вами примере мы использовали всего лишь 2 правила, а именно сложение степеней, когда есть одна основа, и умножение их, когда мы возводим одну степень в другую.

  • У вас не сложение , или вычитание , а умножение. И это очень меняет дело*

    В данном примере нужно привести 4 к степени двойки : 4 =2^(2) , тогда

    2^(3) * 4^(5) = 2^(3) * 2^(2)^5 = 2^(3 * 2^(10) = 2 ^ (3+10) = 2 ^ (13) или 2 в 13 степени.

    Если бы был пример на сложение ,то есть :

    2 ^ (3) + 4 ^ (5) = 2 ^( 3) + (2 )^ 2 ^ 5 = 2 ^ (3) + 2 ^( 10)= 2 ^(3) *1+2 ^( 7).

    И это совсем другой результат.А правила действий со степенями такие :

    a ^ (m) * a ^ (n) = a ^ (m+n)

    a ^(m) a ^ (n) = a ^ (m-n)

    a^ (m )+ a ^( n) = a ^(m) *a ^(m-n)+1}

    Вот это правило очень важное,потому что когда степени стоят как слагаемые,то их нельзя иначе преобразовать,как только вынести общий множитель за скобки.

    ({a ^ (m)}^n= a ^ (m*n)

  • Ничего кроме выполнения отдельных операций согласно их приоритету, вы тут не сделаете. Если вам нужно сложить два разных числа в разных степенях, то сначала каждое число вы возводите в свою степень и после этого выполняете сложение.

    Если у двух слагаемых в основании одно число в разных степенях, можно вынести общее кратное:

    Например, а^x+y + а^x = а^x * (а^y + 1)

    Если основания разные, но степень одна, то в некоторых простых частных случаях можно воспользоваться алгебраическими формулами вроде: а^2-b^2= (а-b) * (a+b). Но это очень редкие совпадения, расчитывать на которые не стоит.

  • В общем случае с этим ничего не сделать, в вашем конкретном примере можно 4 представить как 2 во 2-й степени. Получится (2^2)^5. Далее, т.к. при возведении степени в степень показатели степеней перемножаются, получаем 2^3 x 2^10 = 2^13 = 8192.

    Т.е. числа нужно приводить ко одинаковому основанию или показателю степени. Тут 2 правила:

    X^a * X^b = X^(a+b)

    X^a * Y^a = (XY)^a.

  • В общем случае ничего с таким умножением сделать нельзя. То есть если требуется умножить 2 в квадрате на 3 в кубе, то это не значит, что мы должны 2 умножить на 3 и возвести результат в 5 степень - ответ получится неверный. Приходится возводить 2 в квадрат, а 3 в куб и только потом перемножать числа. Но если требуется 2 в произвольной степени умножить на 4 в произвольной степени, то мы представляем 4 как 2 в квадрате и просто складываем степени. Если же мы складываем или вычитаем два числа возведенных в степени, то тут нет никакого правила - надо возводить и складывать (вычитать) результат: а^3 + b^4 не упростить да и не надо.

  • info-4all.ru

    Как умножать степени, умножение степеней с разными показателями

    #1

    Каждая арифметическая операция порою становится слишком громоздкой для записи и её стараются упростить. Когда-то так было и с операцией сложения. Людям было необходимо проводить многократное однотипное сложение, например, посчитать стоимость ста персидских ковров, стоимость которого составляет 3 золотые монеты за каждый. Приходилось записывать 3+3+3+…+3 = 300. Из-за громоздкости было придумано сократить запись до 3 * 100 = 300. Фактически, запись «три умножить на сто» означает, что нужно взять сто троек и сложить между собой. Умножение прижилось, обрело общую популярность. Но мир не стоит на месте, и в средних веках возникла необходимость проводить многократное однотипное умножение. Вспоминается старая индийская загадка о мудреце, попросившем в награду за выполненную работу пшеничные зёрна в следующем количестве: за первую клетку шахматной доски он просил одно зерно, за вторую – два, третью – четыре, пятую – восемь и так далее. Так появилось первое умножение степеней, ведь количество зёрен было равно двойке в степени номера клетки. К примеру, на последней клетке было бы 2*2*2*…*2 = 2^63 зёрен, что равно числу длиной в 18 знаков, в чём, собственно, и кроется смысл загадки.

    #2

    Операция возведения в степень прижилась довольно быстро, также быстро возникла необходимость проводить сложение, вычитание, деление и умножение степеней. Последнее и стоит рассмотреть более подробно. Формулы для сложения степеней просты и легко запоминаются. К тому же, очень легко понять, откуда они берутся, если операцию степени заменить умножением. Но сначала следует разобраться в элементарной терминологии. Выражение a^b (читается «а в степени b») означает, что число a следует умножить само на себя b раз, причём «a» называется основанием степени, а «b» - степенным показателем. Если основания степеней одинаковые, то формулы выводятся совсем просто. Конкретный пример: найти значение выражения 2^3 * 2^4. Чтобы знать, что должно получиться, следует перед началом решения узнать ответ на компьютере. Забив данное выражение в любой онлайн-калькулятор, поисковик, набрав "умножение степеней с разными основаниямии одинаковыми" или математический пакет, на выходе получится 128. Теперь распишем данное выражение: 2^3 = 2*2*2, а 2^4 = 2*2*2*2. Получается, что 2^3 * 2^4 = 2*2*2*2*2*2*2 = 2^7 = 2^(3+4) . Выходит, что произведение степеней с одинаковым основанием равно основанию, возведённому в степень, равную сумме двух предыдущих степеней.

    #3

    Можно подумать, что это случайность, но нет: любой другой пример сможет лишь подтвердить данное правило. Таким образом, в общем виде формула выглядит следующим образом: a^n * a^m = a^(n+m) . Также существует правило, что любое число в нулевой степени равно единице. Здесь следует вспомнить правило отрицательных степеней: a^(-n) = 1 / a^n. То есть, если 2^3 = 8, то 2^(-3) = 1/8. Используя это правило можно доказать справедливость равенства a^0 = 1: a^0 = a^(n-n) = a^n * a^(-n) = a^(n) * 1/a^(n) , a^(n) можно сократить и остаётся единица. Отсюда выводится и то правило, что частное степеней с одинаковыми основаниями равно этому основанию в степени, равной частному показателя делимого и делителя: a^n : a^m = a^(n-m) . Пример: упростить выражение 2^3 * 2^5 * 2^(-7) *2^0 : 2^(-2) . Умножение является коммутативной операцией, следовательно сначала следует произвести сложение показателей умножения: 2^3 * 2^5 * 2^(-7) *2^0 = 2^(3+5-7+0) = 2^1 =2. Далее следует разобраться с делением на отрицательную степень. Необходимо вычесть показатель делителя из показателя делимого: 2^1 : 2^(-2) = 2^(1-(-2) ) = 2^(1+2) = 2^3 = 8. Оказывается, операция деления на отрицательную степень тождественна операции умножения на аналогичный положительный показатель. Таким образом, окончательный ответ равен 8.

    #4

    Существуют примеры, где имеет место не каноническое умножение степеней. Перемножить степени с разными основаниями очень часто бывает гораздо сложнее, а порой и вообще невозможно. Следует привести несколько примеров различных возможных приёмов. Пример: упростить выражение 3^7 * 9^(-2) * 81^3 * 243^(-2) * 729. Очевидно, имеет место умножение степеней с разными основаниями. Но, следует отметить, что все основания являются различными степенями тройки. 9 = 3^2,1 = 3^4,3 = 3^5,9 = 3^6. Используя правило (a^n) ^m = a^(n*m) , следует переписать выражение в более удобном виде: 3^7 * (3^2) ^(-2) * (3^4) ^3 * (3^5) ^(-2) * 3^6 = 3^7 * 3^(-4) * 3^(12) * 3^(-10) * 3^6 = 3^(7-4+12-10+6) = 3^(11) . Ответ: 3^11. В случаях, когда различные основания, на равные показатели работает правило a^n * b^n = (a*b) ^n. Например, 3^3 * 7^3 = 21^3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.

    uznay-kak.ru

    Показательные уравнения. Конспекты уроков

    Дополнительные сочинения

    На данном уроке мы рассмотрим решение наиболее часто встречающихся типов показательных уравнений.

    1. Определение и свойства показательной функции

    Как правило, все типы показательных уравнений сводятся к простейшим показательным уравнениям.

    Напомним основные свойства показательной функции.

    Показательная функция – это функция вида , где и

    Рис. 1. График показательной функции

    На графике показаны кривые, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большем нуля.

    Обе кривые проходят через точку (0;1)

    Свойства показательной функции:

    Область определения: ;

    Область значений: ;

    Функция монотонна, при возрастает, при убывает.

    Монотонная функция принимает каждое свое значение при единственном значении аргумента.

    2. Методика решения простейших показательных уравнений, пример

    Напомним, как решать простейшие показательные уравнения.

    Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.

    Методика решения:

    Уравнять основания степеней;

    Приравнять показатели степеней.

    Например:

    3. Решение типовых показательных уравнений

    Показательные уравнения, сводящиеся к квадратному:

    Уравняем основания степеней в правой и левой части:

    Получаем квадратное уравнение:

    Следующий тип уравнений, когда показатели степени одинаковые, а основания разные:

    Необходимо уравнять основания степени. Разделим обе части уравнения на , имеем право это сделать т. к. всегда больше нуля:

    Иллюстрация:

    На рисунке 2 красным показан график функции , черным – график функции , очевидно, что графики пересекаются в единственной точке при .

    Рассмотрим следующий тип уравнений на примере.

    (уравнение 3)

    Представим второе слагаемое в левой части как произведение степеней:

           

    Приведем подобные в левой части:

    Рис. 2. Иллюстрация к уравнению с одинаковыми основаниями степени

    Оформить решение уравнения 3 можно иначе.

    Вынесем в левой части за скобки:

    Еще один тип показательных уравнений:

    Воспользуемся свойствами степеней для преобразования левой части:

    Складываем алгебраически полученные дроби:

    Знаменатель данной дроби никогда не равен нулю, числитель приравниваем к нулю:

    Данное уравнение можно было решать иначе, для этого нужно было заметить, что в показателе степени второго слагаемого можно вынести двойку за скобки и получить уравнение с одинаковыми показателями степеней.

    Уравнения, где перемножаются две степени с одинаковым показателем.

    Воспользуемся свойством степени:

    Итак, мы рассмотрели решение типовых показательных уравнений. На следующем уроке мы перейдем к решению более сложных показательных уравнений.

    Список литературы

    Мордкович А. Г. Алгебра и начала математического анализа. – М.: Мнемозина. Муравин Г. К., Муравина О. В. Алгебра и начала математического анализа. – М.: Дрофа. Колмогоров А. Н., Абрамов А. М., Дудницын Ю. П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Mathematics-repetition. com . Terver. ru . Yourtutor. info .

    Домашнее задание

    1. Алгебра и начала анализа, 10–11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990, № 463, 464, 470

    2. Решить уравнение:

    3. Решить уравнение:

    dp-adilet.kz

    ВЫЧИТАНИЕ ЧИСЕЛ СО СТЕПЕНЯМИ С ОДИНАКОВЫМ ОСНОВАНИЕМ — Свойства степеней

    Деление степеней с одинаковым основанием. Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями.

    3.a-3 есть a0 = 1, второй числитель. В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. Теперь рассмотрим их на конкретных примерах и попробуем доказать.

    Таким образом мы доказали, что при делении двух степеней с одинаковыми основаниями, их показатели надо вычитать. После того как определена степень числа, логично поговорить про свойства степени.

    Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров. Например, основное свойство дроби am·an=am+n при упрощении выражений часто применяется в виде am+n=am·an. Приведем пример, подтверждающий основное свойство степени. Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке.

    Свойства степеней с натуральными показателями

    Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Из полученного равенства am−n·an=am и из связи умножения с делением следует, что am−n является частным степеней am и an. Этим доказано свойство частного степеней с одинаковыми основаниями. Для наглядности покажем это свойство на примере. Например, для любых натуральных чисел p, q, r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.

    Сложение и вычитание одночленов

    Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. Достаточно очевидно, что для любого натурального n при a=0 степень an есть нуль. Действительно, 0n=0·0·…·0=0. К примеру, 03=0 и 0762=0. Переходим к отрицательным основаниям степени. Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m, где m — натуральное.

    Переходим к доказательству этого свойства. Докажем, что при m>n и 0

    Осталось доказать вторую часть свойства. Следовательно, am−an>0 и am>an, что и требовалось доказать. Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами.

    Если p=0, то имеем (a0)q=1q=1 и a0·q=a0=1, откуда (a0)q=a0·q. По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств. Условиям p0 в этом случае будут эквивалентны условия m0 соответственно.

    При этом условию p>q будет соответствовать условие m1>m2, что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями. Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно.

    Основные свойства логарифмов

    Вычисление значения степени называют действием возведения в степень. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание). Операции с корнями.

    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем;нодействиясостепенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения. Если мы хотим, чтобы формула a m: a n=a m — nбыла справедлива при m = n,нам необходимо определение нулевой степени.

    Умножение степеней чисел с одинаковыми показателями. Далее мы сформулируем теорему о делении степеней с одинаковыми основаниями, решим разъясняющие задачи и докажем теорему в общем случае. Перейдём теперь к определению отрицательных степеней. Вы можете в этом легко убедиться, подставив формулу из определения в остальные свойства. Для решения данной задачи вспомните, что: 49 = 7^2, а 147 = 7^2 * 3^1. Если Вы теперь аккуратно воспользуетесь свойствами степеней (при возведении степени в степень показатели…

    То есть показатели степени действительно вычитаются, но, поскольку в знаменателе у степени показатель отрицательный, при вычитании минус на минус даёт плюс, и показатели складываются. Вспомним, что называется одночленом, и какие операции можно делать с одночленами. Напомним, что для приведения одночлена к стандартному виду необходимо вначале получить численный коэффициент, перемножив все численные множители, а после этого перемножить соответствующие степени.

    Переход к новому основанию

    То есть, мы должны научиться различать подобные и не подобные одночлены. Сделаем вывод: подобные одночлены имеют одинаковую буквенную часть, и такие одночлены можно складывать и вычитать.

    Спасибо Вам за отзыв. Если наш проект вам понравился и вы готовы помочь или принять участие в нём, перешлите информацию о проекте знакомым и коллегам. В предыдущем видео говорилось ,что в примерах с одночленами может быть только умножение:»Найдем отличие этих выражений от предыдущих.

    Само понятие одночлена как математической единицы подразумевает только умножение чисел и переменных, если есть другие операции, выражение уже не будет одночленом. Но вместе с тем между собой одночлены можно складывать, вычитать, делить… Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

    Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают! Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

    То есть, свойство натуральной степени n произведения k множителей записывается как (a1·a2·…·ak)n=a1n·a2n·…·akn. Правил относительно сложения и вычитания степеней с одинаковыми основаниями не существует. Основание и аргумент первого логарифма — точные степени. 4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.

    Не пропустите:

    utycodertum.ru

    Действия со степенями и корнями

    1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:

    .

    Например, .

    2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:

    .

    Например, .

    3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:

    .

    Например, .

    4. Степень произведения равна произведению степеней множителей:

    .

    Например, .

    5. Степень частного равна частному степеней делимого и делителя:

    .

    Например, .

    Пример 1. Найти значение выражения

    .

    Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:

    (степень произведения равна произведению степеней множителей),

    (при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).

    Теперь получим:

    В данном примере были использованы первые четыре свойства степени с натуральным показателем.

    Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.

    Имеют место следующие тождества:

    1) ;

    2) ;

    3) .

    Выполнить действия со степенями самостоятельно, а затем посмотреть решения

    Пример 2. Найти значение выражения

    .

    Пример 3. Найти значение выражения

    .

    1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).

    2. Если , то (правило извлечения корня из дроби).

    3. Если , то (правило извлечения корня из корня).

    4. Если , то (правило возведения корня в степень).

    5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

    6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

    7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:

    (правило умножения корней),

    (правило деления корней),

    .

    8. Правило вынесения множителя из-под знака корня. При .

    9. Обратная задача - внесение множителя под знак корня. Например,

    10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.

    а) , так как .

    Например, .

    б)

    Например,

    в)

    и т. д.

    11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:

    1) ;

    2) ;

    3)

    Другие темы в блоке "Школьная математика"

    function-x.ru