wiki-fire.org - Электронная энциклопедия пожарного дела. Световой сигнал


II. Световые сигналы

Световые сигналы могу стать важным средством общения, поскольку они хорошо работают в различных ситуациях и особенно эффективны для привлечения внимания членов команды. В темноте при помощи фонарей можно легко передавать информацию на большие расстояния. В тесных местах световые сигналы могут быть предпочтительны, особенно если дайверы не располагаются лицом друг к другу. Даже новички сейчас понимают, насколько фонари могут облегчить передачу информации и обогатить погружение.

Световые сигналы:

• их легко увидеть; • они более эффективны в использовании; • они эффективны на больших расстояниях.

Световые сигналы – эффективное средство для привлечения внимания.

«ОК»:Медленное круговое вращение лучом фонаря обозначает «ОК». Этот сигнал подается или для того, чтобы спросить у дайверов в порядке ли они, или в качестве ответа на этот вопрос. Избегайте попадания луча света в чьи-либо глаза. Как правило, для эффективного общения необходимо направить луч света на дно и нарисовать на нем круг - это поможет избежать ослепления вашего напарника.

«Внимание» и «Экстренная ситуация»:Быстрые, резкие сигналы, подаваемые фонарем, обозначают проблему и требуют немедленного внимания. В отличие от размеренного движения вверх и вниз или вправо-влево, обозначающего «Внимание», быстрый световой сигнал означает экстренную ситуацию. При реальной экстренной ситуации даивер должен быстро двигать лучом из стороны в сторону (вверх-вниз) до тех пор, пока тот, кому подается сигнал, не развернётся и не окажет помощь. Как только он повернется, следует отвести луч в сторону, чтобы не ослепить дайвера. Понятно, что сигнал «Внимание» подается значительно чаще.

Сигнал «Экстренная ситуация» в основном подается при нехватке воздуха, поэтому тот, кому подан сигнал, должен подготовиться к тому, чтобы поделиться воздухом. Следует избегать резких движений фонарем, если вам действительно не нужна немедленная помощь.

III. Тактильные знакы: нулевая видимость

При потере видимости Знакы руками и фонарем становятся бесполезными, и даиверы должны применять физический контакт для передачи друг другу информации. При таком контакте даиверы держатся за своих напарников, как правило, за руку или ногу - это будет зависеть от размера пещеры. Для подобных ситуаций разработана система рудиментарных команд, которая позволяет эффективно поддерживать связь. Одиночное продолжительное крепкое сжатие (щипок) означает «Стоп», толчок вперед - «Двигайся вперед», тянущее усилие назад - «Задний ход». «Запутывание в лине» - скрещиваются указательный и средний пальцы, просовываются в ладонь напарника и проворачиваются в ладони.

V. Частотные знакы

Механические Знакы

До изобретения жилета—компенсатора аквалангисты погружались на спусковом конце, т.е. на веревке, обмотанной вокруг пояса подводника, которую держал страхующий в лодке или на берегу. Вытягивая конец из воды, страхующий помогал подводнику выбираться на поверхность. Сейчас спусковой конец широко используется в нестандартных погружениях, например, на сильном течении, в подводные пещеры или под лед.

  • Дернули один раз: "Все ОК?" Рывок в ответ: "Да, все нормально".

  • Дернули два раза; "Проверь запас воздуха". В ответ один рывок: "Да все в порядке".

  • Дернули три раза: "Начинай (или начинаю) подъем на поверхность".

  • Дернули четыре раза: "Тревога, срочно выходи (выхожу) из воды!"

Профессиональные водолазы, работающие на грунте в вентилируемом снаряжении — в медных шлемах и свинцовых ботах используют конец для самых разнообразных Знаков: например, два раза дернуть и потрясти означает команду "иди влево", а потрясти три раза — "стой на месте". Аквалангистам же достаточно и четырех основных Знаков, тем более что в море, да еще при волнении легко ошибиться, приняв воздействие течений или волн за Знакы "потрясти" или "потянуть".

Частотные Знакы, лежавшие в основе общения через спусковой конец, широко используют и в общении другими методами: похлопывания рукой по плечу партнера или отчетливые рукопожатия в кромешной темноте, световые Знакы — мигание фонаря или другого источника света, звуковые Знакы и проч.

Звуковые Знакы

Звук распространяется под водой прекрасно, поэтому звуковые Знакы высокоэффективны для связи страхующего с подводником. Принцип тот же, что и в других частотных Знаках: один Знак — вопрос — ответ "ОК"; два Знака — "проверь запас воздуха";

три — "начинай (начинаю) подъем на поверхность"; четыре — "тревога, выходи (выхожу) немедленно". Как издавать звуки — это уж зависит от фантазии их издающего. Чаще всего стучат металлическими предметами по борту корабля (ниже ватерлинии!) или друг о друга. Можно, например, завести подвесной мотор п—ное число раз. Однажды ночью мы собирали научный материал; в единственном фонаре сели батарейки. Наши руки были заняты питомзами и другим оборудованием, и мы не могли общаться похлопыванием по плечу. Пришлось разговаривать при помощи... выдохов. Команда из трех отчетливых выдохов с пузырями и с добавлением голоса была услышана и понята.

studfiles.net

Специальный световой сигнал - wiki-fire.org

Пример размещенияспециальных световых сигналовна пожарном автомобиле

Пример размещенияспециальных световых сигналовна пожарном автомобиле

Специальными световыми сигналами в обязательном порядке оборудуются все пожарные автомобили.

Основное назначение специальных световых сигналов – заблаговременное предупреждение участников дорожного движения, пешеходов, лиц участвующих в проведении работ по тушению пожаров или аварийно-спасательных работ о приближении пожарного автомобиля и его размещении. Особенно актуально использование специальных световых сигналов в темное время суток. Однако, в любом случае, при следовании к месту вызова, специальные световые сигналы должны быть включены.

Транспортные средства оперативных служб оснащаются специальными световыми и звуковыми сигналами в порядке, определенном нормативными правовыми актами.

Конструктивно специальные световые сигналы выполняются как в виде отдельных проблесковых маячков, так и в виде их блоков. Так же, существуют модели специальных световых сигналов объединенные со специальными звуковыми сигналами.

Правила применения специальных сигналов

На транспортных средствах пожарной охраны, имеющих специальную цветографическую окраску, при выполнении неотложного служебного задания специальный световой сигнал должен быть включен на всем пути следования автомобиля. В период с 7 до 23 часов в населенных пунктах и в любое время суток вне них одновременно со специальным световым сигналом должен быть включен специальный звуковой сигнал. [2]

Применение специальных световых и звуковых сигналов не освобождает водителей от ответственности за совершение по их вине дорожно - транспортных происшествий.[2]

При проезде перекрестков, при обгоне транспортных средств, в том числе с выездом на полосу встречного движения, и в других случаях одновременное включение специальных световых и звуковых сигналов производится водителями заблаговременно в зависимости от конкретной дорожной обстановки. При необходимости проезда регулируемого перекрестка на запрещающий сигнал светофора водитель должен снизить скорость движения вплоть до остановки с целью обеспечения безопасности и убедиться, что другие участники дорожного движения восприняли специальные световые и звуковые сигналы и приняли необходимые меры предосторожности. [2]

При необходимости для дополнительного оповещения участников дорожного движения о проезде автотранспорта с включенными специальными световыми и звуковыми сигналами следует пользоваться громкоговорящей установкой. [2]

Требования к специальным световым сигналам

Проблесковые маячки

Проблесковые маячки

Специальные световые сигналы должны устанавливаться на крышу транспортного средства или над ней. При этом угол видимости в горизонтальной плоскости, проходящей через центр источника излучения света, должен быть равен 360°.

Проблесковые маячки в других местах транспортного средства устанавливать не допускается. Способы установки проблескового маячка должны обеспечивать надежность его крепления на всех режимах движения и торможения транспортного средства.

Допускается установка на одно транспортное средство более одного проблескового маячка.

Для транспортных средств на шасси грузовых автомобилей, допускается уменьшение угла видимости проблескового маячка до 180°, при условии видимости его со стороны передней части транспортного средства.

На транспортные средства на шасси грузовых автомобилей допускается устанавливать дополнительные проблесковые маячки на крыше кузова или над ней.

Допускается применение проблесковых маячков, конструктивно объединенных в одном корпусе с излучателем звука специального звукового сигнала при условии обеспечения соответствия каждого устройства в отдельности требованиям настоящего стандарта. Такие объединенные устройства должны устанавливаться на крыше транспортного средства и приводиться в действие с помощью одного блока управления.

При установке блоков управления устройствами для подачи специальных световых и звуковых сигналов в салоне (кабине) транспортного средства должны выполняться требования по обеспечению внутренней пассивной безопасности. [1]

Дополнительные требования к специальным световым сигналам

Проблесковые маячки пожарных автомобилей должны быть синего цвета.

Проблесковые маячки должны соответствовать:

  • ГОСТ Р 41.65 - по фотометрическим спецификациям;
  • ГОСТ Р 41.65 и ГОСТ 10984 - по цветовым характеристикам. [1]
Проблесковый маячок по конструкции может быть стационарным, съёмным, а также может быть вмонтирован в сигнальные балки. Установка проблесковых маячков производится на самом видном месте, обычно это крыша. Вре́менное крепление маячка осуществляется с помощью магнита, стационарно маячок крепится винтами к крыше (кабины или кузова) автомобиля. Согласно Правилам допуска транспортных средств, не допускается установка проблескового маячка внутри салона.

Плафон устройства изготавливается из ударопрочного поликарбоната. Обычно применяется материал, устойчивый к воздействию ультрафиолетового излучения.

Светоизлучающие устройства могут быть самыми разными — лампа накаливания с вращающимся рефлектором, ксеноновая лампа-вспышка, матрица светодиодов. В дополнение к маячку на автомобиле могут мигать фары. [3]

Автомобилю с включённым проблесковым маячком и специальным звуковым сигналом правилами дорожного движения всех стран сделаны ряд исключений из общих правил дорожного движения, — в частности дается право игнорировать сигналы светофора (если это будет безопасно и не создаст аварийную ситуацию для других участников дорожного движения). Игнорировать сигналы регулировщика водитель автомобиля с включенным спецсигналом права не имеет. (В такой ситуации регулировщик обязан создать преимущество для проезда спецавтомобилю следующему с включенными спецсигналами.)

При приближении транспортных средств с включённым проблесковым маячком синего цвета и специальным звуковым сигналом водители должны уступить дорогу для обеспечения беспрепятственного проезда этих транспортных средств.

Требование уступить дорогу означает, согласно действующим в России правилам дорожного движения, что участник движения не должен «начинать, возобновлять или продолжать движение, осуществлять какой-либо манёвр, если это может вынудить других участников движения, имеющих по отношению к нему преимущество, изменить направление движения или скорость.»[3]

wiki-fire.org

Световой сигнал Википедия

Спектр света — часть спектра электромагнитного излучения

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц)[1].

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение[2], то есть такое электромагнитное излучение, длины волн которого лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра[3]. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

Раздел физики, в котором изучается свет, носит название оптика.

Также, особенно в теоретической физике, термин свет может иногда выступать просто синонимом термина электромагнитное излучение, независимо от его частоты, особенно когда конкретизация не важна, а хотят, например, использовать более короткое слово.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).

Характеристики света

Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме равна 299 792 458 м/с точно.

Свет на границе между средами испытывает преломление и/или отражение. Распространяясь в среде, свет поглощается и рассеивается веществом. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления есть скалярная функция (в общем случае — от времени и координаты). В анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света — оптическая дисперсия — приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью, благодаря чему возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрический составляющей электромагнитной волны. У эллиптически (в частности циркулярно) поляризованного света электрический вектор, в зависимости от направления поляризации, «вращается» по или против часовой стрелки.

Неполяризованный свет является смесью световых волн со случайной поляризацией. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества, — это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.

Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.

Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.

Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного) включительно.

Скорость света

Скорость света в вакууме определяется в точности 299 792 458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр, как единица длины в СИ с 1983 года определяется как расстояние, проходимое светом за 1/299 792 458 часть секунды[4]. Все виды электромагнитного излучения, как полагают, распространяются в вакууме с точно такой же скоростью.

Различные физики пытались измерить скорость света на протяжении всей истории. Галилей безуспешно пытался измерить скорость света в 1607 году. Другой эксперимент по измерению скорости света был проведён в 1676 году датским физиком Оле Рёмером. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио, фиксируя при этом моменты затмений Ио. Рёмер обнаружил, что эти моменты зависят от положения Земли на её орбите. Предположив, что такая зависимость обусловлена конечностью скорости света, он вычислил, что свету требуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли[5]. Тем не менее, его размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227 000 000 м/с.

Другой — более точный — способ измерения скорости света применил француз Ипполит Физо в 1849 году. Физо направил луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который проходил от источника к зеркалу и затем возвращался к своему источнику. Физо обнаружил, что при определённой скорости вращения луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света, — было получено значение в 313 000 000 м/с.

Существенного прогресса в измерении скорости света удалось достигнуть в результате применения и совершенствования метода вращающегося зеркала, предложенного другим французом — Франсуа Араго (1838 г.). Развив и осуществив идею Араго, Леон Фуко в 1862 году получил значение скорости света равное 298 000 000±500 000) м/с. В 1891 году Саймон Ньюком, повысив точность измерений на порядок, получил величину в 299 810 000±50 000 м/с. В результате многолетних усилий Альберт А. Майкельсон добился ещё более высокой точности: полученное им в 1926 году значение составило 299 796 000±4 000 м/с. В ходе этих измерений А. Майкельсон измерял время, требовавшееся свету, чтобы пройти расстояние между вершинами двух гор, равное 35,4 км (точнее, 35 373,21 м)[6].

Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с[7]. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.

Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 от скорости света в вакууме. Снижение скорости света при прохождении вещества, как полагают, происходит не от фактического замедления фотонов, а от их поглощения и переизлучения частицами вещества.

Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось полностью «остановить» свет, пропуская его через конденсат Бозе-Эйнштейна на основе рубидия,[8] Тем не менее слово «остановить» в этих экспериментах относится только к свету, хранящемуся в возбужденных состояниях атомов, а затем повторно излучаемому в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет «остановился», он перестал быть светом.

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с

Оптические свойства света

Изучение света и взаимодействия света и материи называют оптикой. Наблюдение и изучение оптических явлений, таких как радуга и северное сияние позволяют пролить свет на природу света.

Преломление

Пример преломления света. Соломка кажется изогнутой из-за преломления света на границе между жидкостью и воздухом

Преломлением света называется изменение направления распространения света (световых лучей) при прохождении через границу раздела двух различных прозрачных сред. Оно описывается законом Снеллиуса:

n1sin⁡θ1=n2sin⁡θ2{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}

где θ1{\displaystyle \theta _{1}} — угол между лучом и нормалью к поверхности в первой среде, θ2{\displaystyle \theta _{2}} — угол между лучом и нормалью к поверхности во второй среде, а n1{\displaystyle n_{1}} и n2{\displaystyle n_{2}} — показатели преломления первой и второй среды соответственно. При этом n=1{\displaystyle n=1} для вакуума и n>1{\displaystyle n>1} в случае прозрачных сред.

Когда луч света пересекает границу между вакуумом и другой средой, или между двумя различными средами, длина волны света изменяется, но частота остается неизменной. Если свет падает на границу не перпендикулярно ей, то изменение длины волны приводит к изменению направления его распространения. Такое изменение направления и является преломлением света.

Преломление света линзами часто используется для такого управления светом, при котором изменяется видимый размер изображения, как, например, в лупах, очках, контактных линзах, микроскопах и телескопах.

Источники света

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, положение которого определяется температурой источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К, причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света:

В прикладных науках важна точная характеристика спектра источника света. Особенно важны следующие типы источников:

Указанные источники имеют разную цветовую температуру.

Лампы дневного света, выпускаемые промышленностью, испускают излучение с различным спектральным составом, в том числе:

Радиометрия и световые измерения

Спектральные зависимости относительной чувствительности человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения

К одним из наиболее важных и востребованных наукой и практикой характеристик света, как и любого другого физического объекта, относятся энергетические характеристики. Измерением и изучением такого рода характеристик, выраженных в энергетических фотометрических величинах, занимается раздел фотометрии, называемый «радиометрия оптического излучения»[9]. Таким образом, радиометрия изучает свет безотносительно к свойствам человеческого зрения.

С другой стороны, свет играет особую роль в жизни человека, поставляя ему бо́льшую часть необходимой для жизни информации об окружающем мире. Происходит это благодаря наличию у человека органов зрения — глаз. Отсюда вытекает необходимость измерения таких характеристик света, по которым можно было бы судить о его способности возбуждать зрительные ощущения. Упомянутые характеристики выражают в световых фотометрических величинах, а их измерения и исследования составляет предмет занятий другого раздела фотометрии — «световые измерения»[9].

В качестве единиц измерения световых величин используются особые световые единицы, они базируются на единице силы света «кандела», являющейся одной из семи основных единиц Международной системы единиц (СИ).

Световые и энергетические величины связаны друг с другом с помощью относительной спектральной световой эффективности монохроматического излучения для дневного зрения V(λ){\displaystyle V(\lambda )}[10], имеющей смысл относительной спектральной чувствительности среднего человеческого глаза, адаптированного к дневному зрению. Для монохроматического излучения с длиной волны λ{\displaystyle \lambda }, соотношение, связывающее произвольную световую величину Xv(λ){\displaystyle X_{v}(\lambda )} с соответствующей ей энергетической величиной Xe(λ){\displaystyle X_{e}(\lambda )}, в СИ записывается в виде:

Xv(λ)=683⋅Xe(λ)V(λ).{\displaystyle X_{v}(\lambda )=683\cdot X_{e}(\lambda )V(\lambda ).}

В общем случае, когда ограничений на распределение энергии излучения по спектру не накладывается, это соотношение приобретает вид:

Xv=683⋅∫380 nm780 nmXe,λ(λ)V(λ)dλ,{\displaystyle X_{v}=683\cdot \int \limits _{380~nm}^{780~nm}X_{e,\lambda }(\lambda )V(\lambda )d\lambda ,}

где Xe,λ(λ){\displaystyle X_{e,\lambda }(\lambda )} — спектральная плотность энергетической величины Xe{\displaystyle X_{e}}, определяемая как отношение величины dXe(λ){\displaystyle dX_{e}(\lambda )}, приходящейся на малый спектральный интервал, заключённый между λ{\displaystyle \lambda } и λ+dλ{\displaystyle \lambda +d\lambda }, к ширине этого интервала. Связь световой величины, характеризующей излучение, с соответствующей ей энергетической величиной, выражают также, используя понятие световая эффективность излучения.

Световые величины относятся к классу редуцированных фотометрических величин, к которому принадлежат и другие системы фотометрических величин. Однако, только световые величины узаконены в рамках СИ и только для них в СИ определены специальные единицы измерений.

Давление света

Свет оказывает физическое давление на объекты на своем пути — явление, которое не может быть выведено из уравнений Максвелла, но может быть легко объяснено в корпускулярной теории, когда фотоны соударяются с преградой и передают свой импульс. Давление света равно мощности светового пучка, поделённой на с, скорость света. Из-за величины с, эффект светового давления является незначительным для повседневных объектов. Например, одномилливатная лазерная указка создаёт давление около 3,3 пН. Объект, освещенный таким образом, можно было бы поднять, правда для монеты в 1 пенни на это потребуется около 30 млрд 1-мВт лазерных указок.[11] Тем не менее, в нанометровом масштабе эффект светового давления является более значимым, и использование светового давления для управления механизмами и переключения нанометровых коммутаторов в интегральных схемах является активной областью исследований.[12]

При больших масштабах световое давление может заставить астероиды вращаться быстрее[13], действуя на их неправильные формы, как на лопасти ветряной мельницы. Возможность сделать солнечные паруса, которые бы ускорили движение космических кораблей в пространстве, также исследуется.[14][15]

История теорий света в хронологическом порядке

Античные Греция и Рим

В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

Примерно в 300 году до н. э. Евклидом был написан труд «Оптика», дошедший до наших дней, в котором он исследовал свойства света. Евклид утверждал, что свет распространяется по прямой линии, он изучал законы отражения света и описал их математически. Он выразил сомнение в том, что зрение является следствием исхождения луча из глаза, задаваясь вопросом: как человек, открыв в ночное время глаза, устремлённые в небо, может моментально увидеть звёзды. Проблема решалась только, если скорость луча света, исходящего из человеческого глаза, была бесконечно большой.

В 55 году до н. э. римский писатель Лукреций, продолживший идеи ранних греческих философов-атомистов, в своём сочинении «О природе вещей» писал, что свет и тепло солнца состоят из мельчайших движущихся частиц. Однако общего признания взгляды Лукреция на природу света не получили.

Птолемей (около II века) в своей книге «Оптика» описал преломление света.

Корпускулярная и волновая теории света

Начиная с 17 века научные споры о природе света шли между сторонниками волновой и корпускулярной теорий.

Основателем волновой теории можно считать Рене Декарта, который рассматривал свет как возмущения в мировой субстанции — пленуме. Волновую теорию света разрабатывали Роберт Гук, предположивший и то, что свет является поперечной волной, и Христиан Гюйгенс, давший правильную теорию отражения и преломления света исходя из его волновой природы. По мнению Гюйгенса, световые волны распространяются в особой среде — эфире. Несколько раньше Гримальди открыл интерференцию и дифракцию света, объясняя их с помощью идеи волн, хотя в не слишком ясном и чистом виде, также предположив и связь цвета с волновыми свойствами света.

Корпускулярную теорию сформулировал Пьер Гассенди и поддержал Исаак Ньютон.

В начале 19 века опыты Томаса Юнга с дифракцией дали убедительные свидетельства в пользу волновой теории. Юнг высказал предположение, что разные цвета соответствуют различным длинам волны. В то же время опыты Малюса и Био с поляризацией дали, как казалось тогда, убедительные свидетельства в пользу корпускулярной теории и против волновой теории. Но в 1815 году Ампер сообщил Френелю, что поляризацию света можно объяснить и с волновой точки зрения, если предположить, что свет представляет собой поперечные волны. В 1817 году свою волновую теорию света изложил в заметке для Академии наук Огюстен Френель.

После создания теории электромагнетизма свет был идентифицирован как электромагнитные волны.

Победа волновой теории пошатнулась в конце XIX века, когда опыты Майкельсона-Морли не обнаружили эфира. Волны нуждаются в существовании среды, в которой они могли бы распространяться, однако тщательно спланированные эксперименты не подтвердили существование этой среды. Это привело к созданию Альбертом Эйнштейном специальной теории относительности.

Рассмотрение задачи о тепловом равновесии абсолютно чёрного тела со своим излучением Максом Планком привело к появлению идеи об излучении света порциями — световыми квантами, которые получили название фотонов. Анализ явления фотоэффекта Эйнштейном показал, что поглощение световой энергии тоже происходит квантами.

С развитием квантовой механики утвердилась идея Луи де Бройля о корпускулярно-волновом дуализме, по которой свет должен обладать одновременно волновыми свойствами, чем объясняется его способность к дифракции и интерференции, и корпускулярными свойствами, чем объясняется его поглощение и излучение.

С развитием квантовой механики стало развиваться и понимание того, что вещество (частицы) также имеют волновую природу и во многом подобны свету.

В современной фундаментальной физике (см. например #Квантовая электродинамика) свет и "материальные частицы" рассматриваются по сути равноправно - как квантовые поля (хотя и разных типов, имеющих некоторые существенные различия). Корпускулярный (в основном представленный техникой интегралов по траекториям) и волновой подход в современном виде являются скорее разными техническими подходами или представлениями в рамках одной картины.

Электромагнитная теория

Свет в специальной теории относительности

Квантовая теория

Корпускулярно-волновой дуализм

Квантовая электродинамика

Восприятие света глазом

Нормированные спектральные зависимости чувствительности колбочек трёх типов. Пунктиром показана светочувствительность палочек

Видеть окружающий мир мы можем только потому, что существует свет и человек способен его воспринимать. В свою очередь, восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Сетчатка человеческого глаза имеет два типа светочувствительных клеток: палочки и колбочки. Палочки обладают высокой чувствительностью к свету и функционируют в условиях низкой освещённости, отвечая тем самым за ночное зрение. Однако, спектральная зависимость чувствительности у всех палочек одинакова, поэтому палочки не могут обеспечить способность различать цвета. Соответственно, изображение, получаемое с их помощью, бывает только чёрно-белым.

Колбочки имеют относительно низкую чувствительность к воздействию света и обусловливают механизм дневного зрения, действующий только при высоких уровнях освещённости. В то же время, в отличие от палочек, в сетчатке глаза человека имеется не один, а три типа колбочек, отличающихся друг от друга расположением максимумов их спектральных распределений чувствительности. Вследствие этого колбочки поставляют информацию не только об интенсивности света, но и о его спектральном составе. Благодаря такой информации у человека и возникают цветовые ощущения.

Спектральный состав света однозначно определяет его цвет, воспринимаемый человеком. Обратное утверждение, однако, неверно: один и тот же цвет может быть получен различными способами. В случае монохроматического света ситуация упрощается: соответствие между длиной волны света и его цветом становится взаимнооднозначным. Данные о таком соответствии представлены в таблице.

Таблица соответствия частот электромагнитного излучения и цветовЦвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 790—680 3,26-2,82
Синий 440—485 680—620 2,82-2,56
Голубой 485—500 620—600 2,56-2,48
Зеленый 500—565 600—530 2,48-2,19
Желтый 565—590 530—510 2,19-2,10
Оранжевый 590—625 510—480 2,10-1,98
Красный 625—740 480—405 1,98-1,68

См. также

Примечания

  1. ↑ ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
  2. ↑ Гагарин А. П. Свет // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 460. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  3. ↑ Черняев Ю. С. Оптическое излучение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 459. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  4. ↑ Resolution 1 of the 17th CGPM (1983) — Definition of the metre*
  5. ↑ Scientific Method, Statistical Method and the Speed of Light. Statistical Science 2000, Vol. 15, No. 3, 254—278
  6. ↑ Ландсберг Г. С. Оптика. — М.: ФИЗМАТЛИТ, 2003. — С. 387. — ISBN 5-9221-0314-8.
  7. ↑ The International System of Units (SI) / Bureau International des Poids et Mesures. — Paris, 2006. — P. 144. — 180 p. — ISBN 92-822-2213-6. (англ.)
  8. ↑ Harvard News Office. Harvard Gazette: Researchers now able to stop, restart light. News.harvard.edu (24 января 2001). Проверено 8 ноября 2011. Архивировано 14 октября 2012 года.
  9. ↑ 1 2 ГОСТ 26148-84. Фотометрия. Термины и определения
  10. ↑ ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения.
  11. ↑ Tang, Hong X. (October 2009), "May the Force of Light Be with You", IEEE Spectrum: pp. 41-45, <http://www.spectrum.ieee.org/semiconductors/devices/photonics-breakthrough-for-silicon-chips>. Проверено 7 сентября 2010. .
  12. ↑ See, for example, nano-opto-mechanical systems research at Yale University.
  13. ↑ Kathy A. Asteroids Get Spun By the Sun. Discover Magazine (5 февраля 2004). Архивировано 14 октября 2012 года.
  14. ↑ Solar Sails Could Send Spacecraft 'Sailing' Through Space. NASA (31 августа 2004). Архивировано 14 октября 2012 года.
  15. ↑ NASA team successfully deploys two solar sail systems. NASA (9 августа 2004). Архивировано 14 октября 2012 года.

Ссылки

wikiredia.ru

Световые и звуковые сигналы водителей на дорогах

Значение сигналов фарами и поворотниками в дорожном движении

1. Два коротких сигнала дальним светом - впереди либо засада ГАИ, либо что-то очень опасное (ДТП, препятствие на дороге и т.п.).

2. Один длинный сигнал дальним:

  • 2.1 Сзади - "ДАЙ ДОРОГУ!!!"
  • 2.2 Спереди или сбоку (при маневрировании в городской толчее) - "ПРОПУСТИ!". Может сочетаться с длинным и рассерженым звуковым сигналом.

3. Один короткий сигнал дальним светом - спереди или сбоку в городском заторе: "Давай, брат, пропускаю!". В том числе как ответ на предыдущий пункт 2 "ПРОПУСТИ!".

4. Сигналы поворотником - высокие дальнобойные фуры и автобусы на трассе, которым сверху хорошо видно вперед, могут сзади идущим показывать поворотником:

  • 4.1 Левый поворотник - "Hе суйся, впереди встречная!"
  • 4.2 Правый поворотник - "Давай земляк, жми на газ - впереди свободно!"

5. Сигналы аварийной сигнализацией:

  • 5.1 В ответ на пункт 4.2 после обгона принято несколько раз моргнуть аварийкой: "Спасибо, брат!". Приятно иногда, черт возьми, услышать после этого в спину басовитый короткий гудок.
  • 5.2 Аналогично пункту 5.1 принято благодарить аварийкой, если кто-то тебя пропустил на трассе, заблаговременно перестроившись.
  • 5.3 Сигнал аварийкой одновременно со стоп-сигналами означает резкое или неожиданное торможение (часто используют водители маршруток).

6. Hа трассе при движении в левом ряду можно просить двигающегося впереди водителя уступить дорогу включением левого поворотника. В Европе этот жест вполне понятен, в России последнее время тоже входит в обиход.

Замечание 1: Как правило, большинство водителей частников понимают только первые три пункта. Применение к ним других пунктов чревато непредсказуемыми последствиями.

Замечание 2: Пункты 4, 5 и 6 - трассовые.

Замечание 3: Применение аварийки (см. п. 5.1 и 5.2) весьма развито в Европе. Как следствие, у нас это понимают в основном транснациональные фуры и автобусы.

Комментарии (0)

Идёт загрузка...

xn-----6kccsaeozbsgoedln8v.xn--p1ai

Световой сигнал

Изобретение касается светового сигнала, снабженного полупроводниковым источником света и системой собирающих линз, служащего для представления показаний сигнала, в частности, на рельсовых транспортных путях. В основу изобретения положена задача упростить световой сигнал такого рода, при этом, в частности, следует сократить многообразие типов необходимых полупроводниковых источников света. Световой сигнал, снабженный полупроводниковым источником (2) света и системой (11) собирающих линз, служащий для представления показаний сигнала, в частности, на рельсовых транспортных путях, причем полупроводниковый источник (2) света выполнен в виде белого точечного источника света, при этом для показаний сигналов предусмотрен один общий точечный источник света, снабженный белым светодиодом - светоэмиттирующим диодом - или белым силовым светодиодом - светодиодом высокого тока, а также общая система собирающих линз, при этом в апертурной области точечного источника света предусмотрен автоматический переключатель, служащий для позиционирования цветовых фильтров, предназначенных для этих показаний сигналов, и цветовой фильтр выполнен в виде цветовой фильтрующей пленки из поликарбоната. 3 ил.

 

Изобретение касается светового сигнала, снабженного полупроводниковым источником света и системой собирающих линз, служащего для представления показаний сигнала, в частности, на рельсовых транспортных путях.

Приведенные ниже пояснения касаются по существу светящихся знаков или световых сигналов, служащих для представления показаний сигнала на рельсовых транспортных путях, без ограничения завяленного предмета изобретения этим применением.

У четырех схематично изображенных на фиг. 1 световых сигналов известной конструкции в качестве источника света применяется либо система нити накала лампы 1 накаливания, либо полупроводниковый источник света 2. Световой сигнал с нитью накала состоит по существу из лампы 1 накаливания и оптической системы, снабженной целой линзой 3 или ступенчатой линзой 4, а также цветным фильтрующим стеклом 5, служащим для реализации обычных сигнальных цветов, в частности красного, зеленого и желтого. Световой сигнал с использованием ламп накаливания известен из US 4754272 A, В61L 5/18, 28.06.1988, в котором свет от источников излучения и фильтра при помощи зеркал направляется в сторону единственной оптической системы. У поясняемых на фиг. 1 справа полупроводниковых источников 2 света, например светодиодов - светоэмиттирующих диодов, свет создается путем электрического возбуждения полупроводника. Полупроводниковые источники 2 света обладают совсем другой характеристикой излучения, чем лампы 1 накаливания, так что, как правило, вся оптическая система должна заменяться одной предназначенной для светодиодов матрицей 6 линз. Для определенных типоразмеров применяются также светодиоды 7, которые уже снабжены линзовыми оптическими устройствами. Эти светодиоды 7 и не снабженные оптическими устройствами светодиоды 7.1 должны быть выполнены в виде монохромных светодиодов с узкими пределами координат цветности, чтобы в течение продолжительного времени надежно создавать предназначенный для данного сигнала цвет света. Наряду с правильностью координат цветности должна также обеспечиваться минимальная осевая интенсивность света. Проблематичным у монохромных светодиодов 7, 7.1 является, кроме того, необходимая возможность приобретения, хранение на складе множества типов светодиодов, а также их зависимость от изготовителя. Кроме того, электроснабжение светодиодов для получения одинаковой яркости зависит от цвета, так что требуются сигнальные датчики с различными блоками формирователей. Вследствие этого подтверждения достоверности сигнальных датчиков требуют очень больших затрат.

В основу изобретения положена задача упростить световой сигнал такого рода, при этом, в частности, следует сократить многообразие типов необходимых полупроводниковых источников света.

В соответствии с изобретением задача решается за счет того, что полупроводниковый источник света выполнен в виде белого точечного источника света, при этом для показаний сигналов предусмотрен один общий точечный источник света, снабженный белым светодиодом - светоэмиттирующим диодом - или белым силовым светодиодом - светодиодом высокого тока, а также общая система собирающих линз, при этом в апертурной области точечного источника света предусмотрен автоматический переключатель, служащий для позиционирования цветовых фильтров, предназначенных для этих показаний сигналов, и цветовой фильтр выполнен в виде цветовой фильтрующей пленки из поликарбоната.

Благодаря использованию одного источника света типа источника белого света отпадает необходимость в монохромных полупроводниковых источниках света. Наряду с независимостью от отдельных изготовителей обеспечивается значительное сокращение затрат за счет уменьшения количества конструктивных элементов в узлах формирователей. Предпочтительным является также ожидаемый единый срок службы белых точечных источников света, в то время как монохромные источники света, в зависимости от требуемого электроснабжения с целью достижения минимальной осевой интенсивности света, обладают очень разными сроками службы.

В принципе, следует ожидать, что в будущем достигаемая световая отдача точечных источников света, в частности, на основе силовых светодиодов для белого света будет продолжать увеличиваться. Это означает, что в будущем применяемые еще более мощные белые силовые светодиоды могут при одинаковой силе света требовать меньшего электроснабжения, за счет чего увеличивается срок службы силовых светодиодов.

За счет использования автоматический переключателя для позиционирования цветовых фильтров достигается сокращение количества конструктивных элементов и типоразмеров, при этом могут быть использованы предпочтительные с точки зрения затрат цветовые фильтрующие пленки из поликарбоната.

Эти цветовые пленки очень часто применяются в области фотографии. Кроме того, цветовые фильтрующие пленки из поликарбоната являются особенно термостойкими и сохраняют стабильность в течение продолжительного времени, при этом отдельные цветовые пленки или несколько комбинированных друг с другом цветовых пленок при применении источников белого света, снабженных силовыми светодиодами, могут создавать практически любые желаемые координаты цветности в излучении. При этом предназначенные для применения фильтрующие пленки зависят только от спектрального состава осевой составляющей света и могут очень точно выбираться и оптимизироваться в соответствии со спектральными свойствами фильтрующих пленок. Степень пропускания цветовых фильтрующих пленок сравнима при этом со степенью пропускания соответствующих цветных стеклянных пластин, которые применяются в источниках света ламп накаливания.

Ниже изобретение поясняется подробнее с помощью изображений, представленных на чертежах, на которых:

фиг.1: световые сигналы известной конструкции,

фиг.2: световой сигнал заявленной конструкции,

фиг.3: спектральное распределение света, служащее для создания желтых координат цветности.

В отличие от четырех наглядно представленных на фиг.1 и описанных выше световых сигналов, у предлагаемого изобретением светового сигнала, который изображен на фиг.2, применяется один единственный белый силовой светодиод - светодиод 8 высокого тока - в виде точечного источника света. Он расположен на плате 9, снабженной охлаждающим элементом 10. Для реализации различных сигнальных цветов между силовым светодиодом и системой 11 собирающих линз предусмотрена система 12 цветовых фильтрующих пленок.

На фиг.3 показан слева спектр 13 эмиссии белого силового светодиода 8. Этот силовой светодиод 8 комбинируется с системой 12 цветовых фильтрующих пленок, которая состоит из двух цветовых фильтрующих пленок со спектрами 14 и 15 пропускания. Видно, что получающийся в результате общий спектр 16 обладает высокой степенью пропускания для координат цветности желтого цвета, так что получается светящийся желтым цветом световой сигнал.

1. Световой сигнал, снабженный полупроводниковым источником (2) света и системой (11) собирающих линз, служащий для представления показаний сигнала, в частности, на рельсовых транспортных путях,отличающийся тем, что полупроводниковый источник (2) света выполнен в виде белого точечного источника света, при этом для показаний сигналов предусмотрен один общий точечный источник света, снабженный белым светодиодом - светоэмиттирующим диодом -или белым силовым светодиодом - светодиодом высокого тока, а также общая система собирающих линз, при этом в апертурной области точечного источника света предусмотрен автоматический переключатель, служащий для позиционирования цветовых фильтров, предназначенных для этих показаний сигналов, и цветовой фильтр выполнен в виде цветовой фильтрующей пленки из поликарбоната.

www.findpatent.ru

Какие существуют условия видимости световых сигналов?

Зрительные сигналы, применяемые в авиации, могут быть разделены на три группы:

а) световые сигналы;

б) светящиеся сигнальные знаки:

в) дневные сигнальные знаки.

Световым сигналом называется зрительный сигнал, который излучает свет и наблюдается в виде светящейся точки. Световые сигналы отличаются один от другого цветом излучения или проблесковыми характеристиками [2]. Примером световых сигналов могут служить сигнальные огни посадки, светомаяк и другие сигналы, когда они наблюдаются как светящиеся точки.

Светящимся сигнальным знаком называется зрительный сигнал, который излучает свет и наблюдается как фигура. Светящиеся сигнальные знаки отличаются один от другого формой, цветом и длительностью излучения. Опознавательные знаки на аэродроме, на которых смонтированы источники света, являются примером светящихся сигнальных знаков.

Дневным сигнальным знаком называется зрительный сигнал, который освещается природным светом и наблюдается как фигура. Эти знаки отличаются друг от друга формой и цветом. Примером такого знака являются сигнальные полотнища, аэродромные знаки и т. д. Способы определения дальности видимости световых сигналов, светящихся и дневных сигнальных знаков различны. В этой главе рассмотрим только дальность видимости световых сигналов.

Дальность видимости световых сигналов зависит, главным образом, от их силы света, расстояния огня до наблюдателя, величины пороговой освещенности, яркости фона, на котором наблюдается сигнал, ослабления светового потока атмосферой на пути лучей. Кроме этих основных факторов, на видимости световых сигналов сказываются предварительная адаптация глаза наблюдателя, шум, наличие слепящих яркостей в поле зрения, кислородное голодание, вибрация и др.

 

 

19. Интегральные во времени величины оптического излучения.

11 вопрос

 

20. Что такое пороговая освещенность и от каких факторов она зависит?

Наименьшее значение освещенности на зрачке наблюдателя, при котором виден световой сигнал, называется пороговой освещенностью («световой порог»). Пороговая освещенность зависит от цвета излучения сигнала, яркости фона, на котором наблюдается сигнал, и состояния глаза наблюдателя.

Наименьшая пороговая освещенность получается при наблюдении светового сигнала на совершенно темном фоне, соответствующем яркости меньше кд/м2. Эта величина пороговой освещенности носит название абсолютного порога. По данным различных исследователей, абсолютный световой порог колеблется в пределах от до лк.

 

studopedya.ru

Световой сигнал Википедия

Спектр света — часть спектра электромагнитного излучения

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц)[1].

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение[2], то есть такое электромагнитное излучение, длины волн которого лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра[3]. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

Раздел физики, в котором изучается свет, носит название оптика.

Также, особенно в теоретической физике, термин свет может иногда выступать просто синонимом термина электромагнитное излучение, независимо от его частоты, особенно когда конкретизация не важна, а хотят, например, использовать более короткое слово.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).

Характеристики света[ | код]

Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме равна 299 792 458 м/с точно.

Свет на границе между средами испытывает преломление и/или отражение. Распространяясь в среде, свет поглощается и рассеивается веществом. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления есть скалярная функция (в общем случае — от времени и координаты). В анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света — оптическая дисперсия — приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью, благод

ru-wiki.ru