Оксид углерода (IV). Углерода оксид что это такое


Оксид углерода(IV) - это... Что такое Оксид углерода(IV)?

Оксид углерода (IV) Свойства Строение Техника безопасности Страница дополнительных сведений Родственные соединения
_
Другие названия углекислый газ, двуокись углерода,сухой лёд(твердый)
Формула CO2
Молярная масса 44,0095(14) г/моль
В твердом виде сухой лёд
Вид бесцветный газ
Номер CAS [124-38-9]
Плотность и фазовое состояние 1,9769 кг/м³, при н.у.;771 кг/м³, жидкий;1512 кг/м³, твёрдый
Растворимость в воде 1,45 кг/м³
Удельная теплоемкость 0,846 кДж/(кг*С) при 27 °C
Удельная теплота плавления 25,13 кДж/моль
Точка плавления −57 °C (216 K), под давлением
Точка кипения −78 °C (195 K), возгоняется
Константа диссоциации кислоты (pKa) 6,35 и 10,33
Вязкость 0,07 пз при −78 °C
Форма молекулы линейная
Кристаллическая решётка молекулярная
Дипольный момент ноль
MSDS External MSDS
Главные опасности удушающее, раздражающее
NFPA 704
R-phrases R: As, Fb[источник не указан 1315 дней]
S-phrases S9, S23, S36 (ж) [источник не указан 1315 дней]
RTECS number FF6400000
Структура и свойства n, εr, и т. д.
Спектр УФ, ИК, ЯМР, Масс-спектроскопия
Оксиды COC3O2стандартных условиях (25 °C, 100 кПа)Infobox disclaimer and references

Оксид углерода(IV) (углекислый газ, диоксид углерода, двуокись углерода, угольный ангидрид) — CO2, бесцветный газ (в нормальных условиях), без запаха, со слегка кисловатым вкусом.

Концентрация углекислого газа в атмосфере Земли составляет в среднем 0,0395 %.[1]

Не следует путать с Диоксином.

Плотность при нормальных условиях 1,97 кг/м³. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Свойства

Физические

Оксид углерода (IV) – углекислый газ, газ без цвета и запаха, тяжелее воздуха, растворим в воде, при сильном охлаждении кристаллизуется в виде белой снегообразной массы – «сухого льда». При атмосферном давлении он не плавится, а испаряется, температура сублимации -78 °С. Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Мало растворим в воде (1 объем углекислого газа в одном объеме воды при 15 °С).

Химические

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом ) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

Биологические

Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.

Диоксид углерода не токсичен[источник не указан 60 дней], но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Однако недостаток углекислого газа тоже опасен (см. Гипокапния)[источник не указан 60 дней].

Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).

Получение

В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк, доломит) или при производстве алкоголя. Смесь полученных газов, промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната, чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать СО₂, содержащийся в дымовом газе, а при нагреве отдавать его, таким образом, отделяется готовый продукт от других веществ.

Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора, мела или соды с соляной кислотой. Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты.

Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

Применение

В пищевой промышленности углекислота используется как консервант и разрыхлитель, обозначается на упаковке кодом Е290.

Жидкая углекислота широко применяется в системах пожаротушения, в огнетушителях и для производства газированной воды и лимонада.

Углекислый газ используется в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.

Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании, а также для накачивания шин/камер велосипедных колес.[источник не указан 85 дней].

Когда углекислота применяется в газовой фазе, то для хранения она используется под давлением, как сжиженный газ, в виде жидкой фазы. Хранение углекислоты в баллоне в сжиженном состоянии намного выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру 31°С. Когда в 40-литровый баллон с нормальным давлением 100 кгс/сm² залито 30 кг сжиженного углекислого газа, то при температуре 31°С в баллоне будет только жидкая фаза с давлением 100 кгс/сm². Если температура будет выше, то следует уменьшить заполнение баллона или использовать баллоны с более высоким рабочим давлением. Если углекислота будет охлаждаться, то при температуре 21°С при нормальном заполнении в баллоне появиться газовая фаза.

Твёрдая углекислота — «сухой лёд» — используется в качестве хладагента в лабораторных исследованиях, в розничной торговле и т.д.

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта. Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.

Углекислый газ в природе

Изменения концентрации атмосферного углекислого газа (кривая Килинга). Измерения в обсерватории на горе Мауна-Лоа, Гавайи.

Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40—70°) широт Северного полушария.

Вегетация в тропиках практически не зависит от сезона, сухой пояс пустынь 20—30° (обоих полушарий) дает малый вклад в круговорот углекислоты, а полосы суши, наиболее покрытые растительностью, расположены на Земле асимметрично (в Южном полушарии в средних широтах находится океан).Поэтому с марта по сентябрь вследствие фотосинтеза содержание СО2 в атмосфере падает, а с октября по февраль — повышается. Вклад в зимний прирост дают как окисление древесины (гетеротрофное дыхание растений, гниение, разложение гумуса, лесные пожары), так и сжигание ископаемых топлив (угля, нефти, газа), заметно увеличивающееся в зимний сезон[2].

Большое количество углекислоты растворено в океане.

Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы: Венеры, Марса.

Токсичность

Углекислый газ является тяжелым, по сравнению с воздухом, газом без цвета и запаха. Воздействие его повышенных концентраций на живые организмы относит его к удушающим газам (англ.)русск.. Незначительные повышения концентрации до 2-4% в непроветриваемых помещениях приводят к развитию сонливости и слабости. Опасными концентрациями считаются уровни 7-10%, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потери сознания в течение периода времени от нескольких минут до одного часа.[3] Отравление этим газом не приводит к долговременным последствиям и после его завершения происходит полное восстановление организма.[4]

Интересные факты

  • Подземное животное голый землекоп отличается терпимостью к большим (смертельным для других животных) концентрациям углекислого газа.[5]
  • Бо́льшая, по сравнению с человеком, чувствительность других животных к изменениям концентрации этого газа использовалась в качестве естественного детектора опасных концентраций этого газа. Повышенная чувствительность к углекислоте канареек использовалась шахтерами для определения начала скопления этого газа под землей.
  • В результате обычного функционирования организма каждого человека в среднем в течение одного дня образуется 1 кг углекислого газа (300 гр углерода).[6]

См. также

Примечания

  1. ↑ Trends in Carbon Dioxide
  2. ↑ А. В. Бялко. Растения убыстряют рост. «Природа». No 10, 1996. (по Keeling C.D., Whorf Т.P., Wahlen M., van der Plicht J. // Nature. 1995. V. 375, № 6533. P.666-670)
  3. ↑  (англ.) Carbon Dioxide as a Fire Suppressant: Examining the Risks, U.S. Environmental Protection Agency:.
  4. ↑  (англ.) Glatte Jr H. A., Motsay G. J., Welch B. E. (1967). «Carbon Dioxide Tolerance Studies». Brooks AFB, TX School of Aerospace Medicine Technical Report SAM-TR-67-77. Проверено 2008-05-02.
  5. ↑ А. Шиндер. Животное, не чувствующее боли. 2000-Аспекты-Проблемы № 26(420), 27 июня-3 июля 2008
  6. ↑  (англ.) How much carbon dioxide do humans contribute through breathing?.(недоступная ссылка — история) Проверено 30 апреля 2009.

Литература

  • Вукалович М.П., Алтунин В.В., Теплофизические свойства двуокиси углерода, Атомиздат, Москва, 1965. 456 с.
  • Тезиков А.Д., Производство и применение сухого льда, Госторгиздат, Москва, 1960. 86 с.
  • Гродник М.Г., Величанский А.Я., Проектирование и эксплуатация углеслотных установок, ″Пищевая промышленность″, Москва, 1966. 275 с.
  • Талянкер Ю.Е., Особенности хранения баллонов со сжиженным газом, Журнал "Сварочное производство", №11, 1972, Москва.

Ссылки

dic.academic.ru

Оксид углерода(II) - это... Что такое Оксид углерода(II)?

Оксид углерода (II) (угарный газ, окись углерода, монооксид углерода) — бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула — CO. Нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму)[1].

Строение молекулы

Молекула CO имеет тройную связь, как и молекула азота N2. Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой :C=O:.

Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ²Oσ²zπ4x, yσ²C. Тройная связь образована σ—связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум π—связям. Электроны на несвязывающих σC—орбитали и σO—орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10−29Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C−←O+ (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

Свойства

Оксид углерода (II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует оксид углерода (II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции:

до 830 °C смещено вправо, выше 830 °C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода (II) горит пламенем синего цвета[2] (температура начала реакции 700 °C) на воздухе:

ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K

Температура горения CO может достигать 2100 °C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

Оксид углерода (II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

Оксид углерода (II) реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO2:

C переходными металлами образует очень летучие, горючие и ядовитые соединения — Карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др.

Оксид углерода (II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

Интересна реакция оксида углерода (II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (диоксид тория ThO2) по уравнению:

Важнейшим свойством оксида углерода (II) является его реакции с водородом (процесс синтеза Фишера-Тропша):

спирты + линейные алканы

Этот процесс является источником производства таких важнейших промышленных продуктов как метанол, синтетическое дизельное топливо, многоатомные спирты, масла и смазки.

С d-металлами образует карбонильные соединения:

Физиологическое действие, токсичность

TLV (предельная пороговая концентрация, США): 25 ppm; 29 мг/м³ (как TWA — среднесменная концентрация, США) (ACGIH 1994—1995). MAC (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м³; Беременность: B (вредный эффект вероятен даже на уровне MAK) (1993). ПДКр.з. по Гигиеническим нормативам ГН 2.2.5.1313—03 составляет 20 мг/м³ (около 0,0017%).

В выхлопе бензинового автомобиля допускается до 1,5-3 %.

По классификации ООН оксид углерода (II) относится к классу опасности 2,3, вторичная опасность по классификации ООН: 2,1.

Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаки отравления: головная боль и головокружение; отмечается шум в ушах, одышка, сердцебиение, мерцание перед глазами, покраснение лица, общая слабость, тошнота, иногда рвота; в тяжёлых случаях судороги, потеря сознания, кома[3][2].

Токсическое действие оксида углерода (II) обусловлено образованием карбоксигемоглобина - значительно более прочного карбонильного комплекса с гемоглобином, в сравнении с комплексом гемоглобина с кислородом (оксигемоглобином)[3], блокируя, таким образом, процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[3].

Опытами на молодых крысах выяснено, что 0,02 % (возможно — 0,02 г/м³, то есть ПДК?) концентрация CO в воздухе замедляет их рост и снижает активность по сравнению с контрольной группой. Интересно то, что крысы, живущие в атмосфере с повышенным содержанием CO, предпочитали воде и раствору глюкозы спиртовой раствор в качестве питья (в отличие от контрольной группы, особи в которой предпочитали воду).

Помощь при отравлении оксидом углерода (II)[3]

Соединение окиси углерода с гемоглобином обратимо.

  • Пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом.
  • Искусственная вентиляция лёгких.
  • Лобелин или кофеин под кожу.
  • Карбоксилаза внутривенно.
  • Ацизол внутримышечно.

Защита от оксида углерода (II)

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух. Обычный способ защиты — использование изолирующего дыхательного аппарата[2].

История открытия

Оксид углерода (II) был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крукшэнк. оксид углерода (II) вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Получение

Промышленный способ

Влияние температуры на равновесие реакции :: (тепловой эффект этой реакции 220 кДж), (ΔH=172 кДж, ΔS=176 Дж/К)

Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода (II), вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ»[2].

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода (II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

Лабораторный способ

Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:
  • Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду.

Определение оксида углерода (II)

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

Эта реакция очень чувствительная. Стандартный раствор: 1 грамма хлорида палладия на литр воды.

Количественное определение оксида углерода (II) основано на иодометрической реакции:

Применение

  • Оксид углерода (II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
  • Оксид углерода (II) применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология). Допустимая концентрация CO равна 200 мг/кг мяса.
  • Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления.

Оксид углерода (II) в атмосфере Земли

Содержание CO в атмосфере Земли по данным MOPITT

Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Оксид углерода (II) образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение оксида углерода (II) за счёт обычных в почвах фенольных соединений, содержащих группы OCh4 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв оксид углерода (II) выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % оксида углерода (II). В коммунальной сфере не применяется в виду наличия значительно более дешёвого и энергоэффективного аналога - природного газа.

Поступление CO от природных и антропогенных источников примерно одинаково.

Оксид углерода (II) в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года. Основной канал потери CO — окисление гидроксилом до диоксида углерода.

См. также

Примечания

  1. ↑ Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах. — М.: Химия, 1990. — Т. Книга 2. — С. 384.
  2. ↑ 1 2 3 4 Оксид углерода. // Российская энциклопедия по охране труда: В 3 т. — 2-е изд., перераб. и доп. — М.: Изд-во НЦ ЭНАС,2007. Архивировано из первоисточника 22 июня 2012. Проверено 5 июня 2012.
  3. ↑ 1 2 3 4 Справочник фельдшера, под ред. А. Н. Шабанова М.: «Медицина», 1984.

Литература

  • Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: Высш. шк.; 2003 ISBN 5-06-003363-5
  • Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. Стр. 495—497, 511—513
  • Химия: Справ. из./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Перс. с нем. 2-е изд., стереотип. — М.:Химия, 2000 ISBN 5-7245-0360-3 (рус.)
  • Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах; Книга 2. - М.: Химия, 1990 - 384с.

Ссылки

dic.academic.ru

Оксид углерода (II) - это... Что такое Оксид углерода (II)?

Монооксид углерода (лат. Carbon monoxide; другие названия — уга́рный газ, окись углерода, моноокись углерода, оксид углерода (II)) — бесцветный газ без вкуса и запаха. Химическая формула CO.

Регистрационные номера:

  • ICSC 0023
  • RTECS FG3500000
  • ООН 1016
  • EC 006-001-00-2

Классификация ООН

  • Класс опасности ООН 2,3
  • Вторичная опасность по классификации ООН 2,1

Строение молекулы

Молекула CO, так же, как и изоэлектронная ей молекула азота, имеет тройную связь. Так как эти молекулы сходны по строению, то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой :C≡O:, причём третья связь образована по донорно-акцепторному механизму, где углерод является акцептором электронной пары, а кислород — донором.

Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ2Oσ2zπ4x, yσ2C. Тройная связь образована σ—связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум σ—связям. Электроны на несвязывающих σC—орбитали и σO—орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10-29Кл·м (направление дипольного момента O-→C+). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

История открытия

Монооксид углерода был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем. То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крукшэнк. Моноксид углерода вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Монооксид углерода в атмосфере Земли

Содержание CO в атмосфере Земли по данным MOPITT

Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Монооксид углерода образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение монооксида углерода за счёт обычных в почвах фенольных соединений, содержащих группы OCh4 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв монооксид углерода выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % монооксида углерода. В настоящее время в коммунальной сфере этот газ вытеснен гораздо менее токсичным природным газом (низшие представители гомологического ряда алканов — пропан и др.)

Поступление CO от природных и антропогенных источников примерно одинаково.

Монооксид углерода в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года, окисляясь гидроксилом до диоксида углерода.

Получение

Промышленный способ

1. Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:

2C + O2 → 2CO↑ (тепловой эффект этой реакции 22 кДж),

2. или при восстановлении диоксида углерода раскалённым углём:

CO2 + C ↔ 2CO↑ (ΔH=172 кДж, ΔS=176 Дж/К).

Эта реакция часто происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом монооксид углерода, вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ». Картина протекающих в печи реакций приведена на схеме.

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400°C равновесие практически полностью сдвинуто влево, а при температуре выше 1000°C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому монооксид углерода при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

3. Смеси монооксида углерода с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).

Лабораторный способ

1. Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропуская муравьиную кислоту над оксидом фосфора P2O5. Схема реакции:

HCOOH →(t, h3SO4) h3O + CO↑

Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:

HCOOH + ClSO3H → h3SO4 + HCl + CO↑.

2. Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:

h3C2O4 →(t, h3SO4) CO↑ + CO2↑ + h3O.

Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду.

3. Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

K4[Fe(CN)6] + 6h3SO4 →(t) 2K2SO4 + FeSO4 + 3(Nh5)2SO4 + 6CO↑.

Токсическое действие CO на человека

Физиологическое действие, токсичность

Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаками отравления служат головная боль, головокружение и потеря сознания. Токсическое действие монооксида углерода основано на том, что он связывается с гемоглобином крови прочнее, чем кислород (при этом образуется карбоксигемоглобин), таким образом, блокируя процессы транспортировки кислорода и клеточного дыхания. Предельно допустимая концентрация монооксида углерода в воздухе промышленных предприятий составляет 0,02 мг/л. Концентрация более 0,1 % — смертельна. В выхлопе бензинового автомобиля допускается до 1,5-3 %.

Опытами на молодых крысах выяснено, что 0,02-процентная концентрация CO в воздухе замедляет их рост и снижает активность по сравнению с контрольной группой. Интересно то, что крысы, живущие в атмосфере с повышенным содержанием CO, предпочитали воде и раствору глюкозы спиртовой раствор в качестве питья (в отличие от контрольной группы, особи в которой предпочитали воду).

Помощь при отравлении монооксидом углерода: пострадавшего следует вынести на свежий воздух, полезно также кратковременное вдыхание паров нашатырного спирта.

TLV (предельная пороговая концентрация, США): 25 ПДКр.з. по Гигиеническим нормативам ГН 2.2.5.1313—03 составляет 20 мг/м³

Защита от монооксида углерода

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух.

Свойства

Монооксид углерода представляет собой бесцветный газ без вкуса и запаха. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует монооксид углерода, являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830°C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции:

h3O + CO ↔ CO2 + h3 + 42 кДж

до 830°С смещено вправо, выше 830°C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Монооксид углерода горит синим пламенем (температура начала реакции 700°C) на воздухе:

CO + 1/2O2 → 2CO2 ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K

Температура горения CO может достигать 2100°C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

Монооксид углерода реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

CO + Cl2 → COCl2

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42°C, кипения +16°C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200°C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

(FCO)2O2 + 2KI → 2KF + I2 + 2CO2↑

Монооксид углерода реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

CO + S → COS ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K

Получены также аналогичные селеноксид COSe и теллуроксид COTe.

Восстанавливает SO2:

SO2 + 2CO → 2CO2 + S

C переходными металлами образует очень летучие, горючие и ядовитые соединения — карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др.

Как указано выше, монооксид углерода незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако с расплавами щелочей вступает в реакцию:

CO + KOH → HCOOK

Интересна реакция монооксида углерода с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

2K + 2CO → K+O-—C2—O-K+

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (оксид тория ThO2) по уравнению:

CO + Nh4 → h3O + HCN

Определение монооксида углерода

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

PdCl2 + h3O + CO → CO2 + 2HCl + Pd↓

Эта реакция очень чувствительная. Стандартный раствор 1 грамма хлорида палладия на литр воды.

Количественное определение монооксида углерода основано на иодометрической реакции:

5CO + I2O5 → 5CO2 + I2

Применение

  • Моноксид углерода применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология). Допустимая концентрация CO равна 200 мг/кг мяса.

См. также

Литература

  • Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: Высш. шк.; 2003 ISBN 5-06-003363-5
  • Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. Стр. 495—497, 511—513
  • Химия: Справ. из./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Перс. с нем. 2-е изд., стереотип. — М.:Химия, 2000 ISBN 5-7245-0360-3 (рус.)

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Оксид углерода (IV) - это... Что такое Оксид углерода (IV)?

Диоксид углерода Свойства Строение Техника безопасности Страница дополнительных сведений Родственные соединения
Другие названия углекислый газ, углекислота,сухой лед(твердый)
Формула CO2
Молярная масса 44.0095(14) г/моль
В твердом виде сухой лед
Вид бесцветный газ
Номер CAS [124-38-9]
Плотность и фазовое состояние 1.98 кг/м³, при н.у.;771 кг/м³, жидкий;1512 кг/м³, твёрдый
Растворимость в воде 1.45 кг/м³
Удельная теплота плавления 25.13 кДж/моль
Точка плавления −57 °C (216 K), под давлением
Точка кипения −78 °C (195 K), возгоняется
Константа диссоциации кислоты (pKa) 6.35 and 10.33
Вязкость 0.07 пз при −78 °C
Форма молекулы линейная
Кристаллическая решётка кварцевидная
Дипольный момент ноль
MSDS External MSDS
Главные опасности удушающее, раздражающее
NFPA 704

0

0

0

 

(жидкость)

R-phrases R: As, Fb
S-phrases S9, S23, S36 (ж)
RTECS number FF6400000
Структура и свойства n, εr, и т. д.
Спектр УФ, ИК, ЯМР, Масс-спектроскопия
Оксиды COC3O2C2OCO3
Если не указано иное, данные даны дляматериалов при стандартных условиях (25 °C, 100 кПа)Infobox disclaimer and references

Диокси́д углеро́да (двуо́кись углеро́да, углеки́слый газ, окси́д углеро́да (IV), диокси́д углеро́да, у́гольный ангидрид, углекислота́) — CO2, бесцветный газ со слегка кисловатым запахом и вкусом.

Концентрация углекислого газа в атмосфере Земли составляет 0,038 %.

Не следует путать с Диоксин.

Свойства

Физические

Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Химические

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

Биологические

Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.

Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)

Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).

Получение

В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.

Применение

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.

Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада. Углекислый газ используется в качестве активной среды при сварке проволокой так как при температуре дуги углекислота разлагается на угарный газ СО и кислород который в свою очередь и входит в заимодействие с жидким металом окисляя его. Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Твёрдая углекислота — сухой лёд — используется в качестве хладагента в ледниках и морозильных установках.

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.

Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.

Концентрация

  • Подземное животное голый землекоп отличается терпимостью к большим (смертельным для других животных) концентрациям углекислого газа.[1]

Примечания

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Диоксид углерода — Википедия

Материал из Википедии — свободной энциклопедии

Перейти к навигации Перейти к поиску Диоксид углеродаОбщие Систематическоенаименование Традиционные названия Хим. формула Физические свойства Состояние Молярная масса Плотность Динамическая вязкость Энергия ионизации Термические свойства
Диоксид углерода
углекислый газ, углекислота, двуокись углерода, сухой лёд (в твёрдом состоянии)
CO2
бесцветный газ
44,01 г/моль
газ (0 °C): 1,9768 кг/м³жидкость (0 °С, 35,5 ат): 925 кг/м³тв. (−78,5 °C): 1560 кг/м³
8,5·10−5 Па·с (10°C, 5,7 МПа)
13,77 ± 0,01 эВ[1]

ru.wikipedia.org

Углерода оксид - это... Что такое Углерода оксид?



Российская энциклопедия по охране труда. — М.: НЦ ЭНАС. Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова. 2007.

  • Углерода диоксид
  • Уголовная ответственность

Смотреть что такое "Углерода оксид" в других словарях:

  • УГЛЕРОДА ОКСИД — (угарный газ), CO, tкип 191,5шC. Образуется при неполном сгорании топлива. Углерода оксид высококалорийное топливо, исходное вещество при получении спиртов, альдегидов и других органических веществ, восстановитель при выплавке чугуна, стали и… …   Современная энциклопедия

  • Углерода оксид — (угарный газ), CO, tкип 191,5°C. Образуется при неполном сгорании топлива. Углерода оксид высококалорийное топливо, исходное вещество при получении спиртов, альдегидов и других органических веществ, восстановитель при выплавке чугуна, стали и… …   Иллюстрированный энциклопедический словарь

  • УГЛЕРОДА ОКСИД — (угарный газ) СО, газ без цвета и запаха, плотность 1,25 г/л, tкип 191,5 .С. Образуется при неполном сгорании углерода или его соединений (в печах, двигателях внутреннего сгорания). На воздухе горит синим пламенем (2СО + О2 = 2СО2). В… …   Большой Энциклопедический словарь

  • Углерода оксид — со Монооксид углерода, относящийся к классу опасности IV Источник: ГОСТ Р 51206 98: Автотранспортные средства. Содержание вредных веществ в воздухе салона и кабины. Нормы и методы опреде …   Словарь-справочник терминов нормативно-технической документации

  • углерода оксид — (угарный газ), СО, газ без цвета и запаха, плотность 1,25 г/л, tкип  191,5°C. Образуется при неполном сгорании углерода или его соединений (в печах, двигателях внутреннего сгорания). На воздухе горит синим пламенем (2СО + О2 = h3СО2).… …   Энциклопедический словарь

  • Углерода оксид — Известно три оксида углерода: Монооксид углерода CO Диоксид углерода CO2 Диоксид триуглерода C3O2 …   Википедия

  • УГЛЕРОДА ОКСИД — (монооксид углерода, угарный газ) СО, мол. м. 28,01; газ без цвета и запаха. Связь в молекуле СО тройная, длина связи 0,113 HM, энергия диссоциации 1071,78 кДж/моль, 0,4 …   Химическая энциклопедия

  • УГЛЕРОДА ОКСИД — (угарный газ), СО, газ без цвета и запаха, плотн. 1,25 г/л, tкип 191,5 °С. Образуется при неполном сгорании углерода или его еоед. (в печах, двигателях внутр. сгорания). На воздухе горит синим пламенем (2СО + О2=2СО2). В пром сти получают… …   Естествознание. Энциклопедический словарь

  • УГЛЕРОДА ОКСИД — угарный газ, СО ядовитый газ без цвета и запаха; плотн. 1,25 кг/м3; tкип 191,5 °С, tпл 205 °С. В воде плохо растворим. Горит на воздухе (2СО + O2 = 2CO2) с выделением большого кол ва теплоты. В пром сти У. о. получают газификацией твёрдых топлив; …   Большой энциклопедический политехнический словарь

  • Оксид углерода (II) — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

labor_protection.academic.ru

оксид углерода - это... Что такое оксид углерода?

 оксид углерода carbonic oхide

Большой англо-русский и русско-английский словарь. 2001.

  • оксид титана
  • оксид хрома

Смотреть что такое "оксид углерода" в других словарях:

  • Оксид углерода(II) — Оксид углерода(II) …   Википедия

  • оксид углерода — оксид углерода: Газообразный продукт неполного окисления углерода, входящего в состав углеводородного топлива, обозначаемый символом СО. Источник: ГОСТ Р 5 …   Словарь-справочник терминов нормативно-технической документации

  • Оксид углерода(IV) — Оксид углерода (IV) …   Википедия

  • ОКСИД УГЛЕРОДА — (окись углерода, угарный газ CO) газ без цвета и запаха; почти не поглощается активированным углем; горит синим пламенем с образованием CO2 и выделением тепла; концентрационные пределы взрываемости (КПВ) в смеси с воздухом 12,5 74,2%; смесь CO :… …   Российская энциклопедия по охране труда

  • оксид углерода — (CO2) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN carbonic oxide …   Справочник технического переводчика

  • Оксид углерода (II) — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • ОКСИД УГЛЕРОДА — окись углерода, угарный газ (СО) ядовитый газ без цвета и запаха; плотность 1,25 кг/м3; tкир= 191,5°С; tпл= 205° С; плохо растворим в воде. Горит на воздухе с выделением большого количества теплоты. Оксид углерода образуется при сгорании… …   Металлургический словарь

  • оксид углерода СО, — 3.5 оксид углерода СО, %: Газообразный продукт неполного окисления углерода, входящего в состав углеводородного топлива. Источник …   Словарь-справочник терминов нормативно-технической документации

  • оксид углерода (СО) — 3.5.2 оксид углерода (СО): Газ, относящийся к классу опасности 4. Источник: ГОСТ Р 51206 200 …   Словарь-справочник терминов нормативно-технической документации

  • Оксид углерода (IV) — Диоксид углерода Другие названия углекислый газ, углекислота, сухой лед(твердый) Формула CO2 Молярная …   Википедия

  • Оксид углерода — Известно три оксида углерода: Монооксид углерода CO Диоксид углерода CO2 Диоксид триуглерода C3O2 …   Википедия

dic.academic.ru