Первая окружность с центром о вписанная в равнобедренный треугольник klm. Вписанная в равнобедренный треугольник окружность


Радиус окружности, вписанной в равнобедренный треугольник

Радиус окружности, вписанной в равнобедренный треугольник, можно найти по стандартной формуле.

Свойства равнобедренного треугольника дают возможность получить дополнительные формулы. Рассмотрим некоторые из них.

Поскольку для равнобедренного треугольника полупериметр

   

то

   

Так как формула площади равнобедренного треугольника по формуле Герона равна

   

то

   

Эту формулу можно упростить

   

Таким образом, радиус окружности, вписанной в равнобедренный треугольник, равен

   

Если найти площадь по боковой стороне  b и высоте, проведенной к основанию ha:

   

   

то получим еще одну формулу для нахождения радиуса вписанной в равнобедренный треугольник окружности:

   

Так как центр вписанной в треугольник окружности является точкой пересечения биссектрис треугольника, если известны углы при вершине и основании

   

то

   

Из прямоугольного треугольника AOF

   

   

Если известна боковая сторона и угол при основании, из прямоугольного треугольника ACF найдем AF

   

а затем из треугольника AOF — OF:

   

Эти формулы могут помочь ускорить вычисления. Запоминать их необязательно, достаточно повторить рассуждения.

www.treugolniki.ru

Радиус вписанной окружности в равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

 

a - равные стороны равнобедренного треугольника

b - сторона ( основание)

α - угол при основании

О - центр вписанной окружности

r - радиус вписанной окружности

 

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

 

 

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

 

 

2. Формулы радиуса вписанной окружности если известны: сторона и высота

 

a - равные стороны равнобедренного треугольника

b - сторона ( основание)

h - высота

О - центр вписанной окружности

r - радиус вписанной окружности

 

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Подробности Автор: Administrator Опубликовано: 09 сентября 2011 Обновлено: 27 мая 2017

www-formula.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Планиметрия

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

      Напомним определение биссектрисы угла.

      Определение 1. Биссектрисой угла называют луч, делящий угол на две равные части.

      Теорема 1 (Основное свойство биссектрисы угла). Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

      Доказательство. Рассмотрим произвольную точку D, лежащую на биссектрисе угла BAC, и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE, а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Рис. 2

      Доказательство. Рассмотрим произвольную точку D, лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE, а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

      Определение 2. Окружность называют окружностью, вписанной в угол, если она касается касается сторон этого угла.

      Теорема 3. Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

      Доказательство. Пусть точка D – центр окружности, вписанной в угол BAC, а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

      Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности), а гипотенуза AD – общая. Следовательно

AF = AE,

что и требовалось доказать.

      Замечание. Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных, проведенных к окружности из одной точки, равны.

      Напомним определение биссектрисы треугольника.

      Определение 3. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

      Теорема 4. В любом треугольнике все три биссектрисы пересекаются в одной точке.

      Доказательство. Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC, и обозначим точку их пересечения буквой O (рис. 4).

Рис. 4

      Опустим из точки O перпендикуляры OD, OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC, то в силу теоремы 1 справедливо равенство:

OD = OE,

      Поскольку точка O лежит на биссектрисе угла ACB, то в силу теоремы 1 справедливо равенство:

OD = OF,

      Следовательно, справедливо равенство:

OE = OF,

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC. Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

     Определение 4. Окружностью, вписанной в треугольник, называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности.

Рис. 5

      Следствие. В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

      Формулы, позволяющие найти радиус вписанной в треугольник окружности, удобно представить в виде следующей таблицы.

ФигураРисунокФормулаОбозначения
Произвольный треугольник

Посмотреть вывод формулы

a, b, c – стороны треугольника,S – площадь,r – радиус вписанной окружности,p – полупериметр

.

Посмотреть вывод формулы

Равнобедренный треугольник

Посмотреть вывод формулы

a – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружности

Равносторонний треугольник

Посмотреть вывод формулы

a – сторона равностороннего треугольника,r – радиус вписанной окружности

Прямоугольный треугольник

Посмотреть вывод формул

a, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружности

Произвольный треугольник

гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.

Посмотреть вывод формулы

гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.

Посмотреть вывод формулы

Равнобедренный треугольник

гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

гдеa – сторона равностороннего треугольника,r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружности

Посмотреть вывод формул

Произвольный треугольник

гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.

Посмотреть вывод формулы

гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.

Посмотреть вывод формулы

Равнобедренный треугольник

гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

гдеa – сторона равностороннего треугольника,r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружности

Посмотреть вывод формулы

Вывод формул для радиуса окружности, вписанной в треугольник

      Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

Рис. 6

      Доказательство. Из формулы

с помощью формулы Герона получаем:

что и требовалось.

      Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Рис. 7

      Доказательство. Поскольку для произвольного треугольника справедлива формула

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

      Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Рис. 8

      Доказательство. Поскольку для равнобедренного треугольника справедлива формула

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

      Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a, b – катеты прямоугольного треугольника, c – гипотенуза, r – радиус вписанной окружности.

      Доказательство. Рассмотрим рисунок 9.

Рис. 9

      Поскольку четырёхугольник CDOF является прямоугольникомпрямоугольником, у которого соседние стороны DO и OF равны, то этот прямоугольник – квадратквадрат. Следовательно,

СD = СF= r,

      В силу теоремы 3 справедливы равенства

      Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Окружность, вписанная в треугольник. Теоремы и их рассмотрение

Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука "геометрия" от греческих слов "геос" - земля и "метрио" - измеряю.

Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие - теорема Пифагора.

Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:

В треугольник можно вписать только одну окружность.

При таком расположении окружность - вписанная, а треугольник - описанный около окружности.

Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:

Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.

Окружность, вписанная в равнобедренный треугольник

Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.

На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено - она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.

Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).

Свойства теоремы об окружности, вписанной в треугольник:

  • Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
  • Радиус окружности (вписанной) - это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.

Окружность, вписанная в прямоугольный треугольник

Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.

Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.

Есть хорошая формула, которая поможет высчитать площадь треугольника - периметр умножить на радиус вписанной в этот треугольник окружности.

Формулировка теоремы о вписанной окружности

В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:

Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.

Теорема о центре окружности, вписанной в треугольник

Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.

Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.

fb.ru

Свойства равнобедренного треугольника вписанного в окружность

Найти площадь круга, окружность которого описана около квадрата с диагональю 10 см. Реклама. Попроси больше объяснений; Следить ? Отметить нарушение ? Бондаренко96 21.02.2013. Войти чтобы добавить комментарий.

Math5school. ru

Треугольники

Основные свойства

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.

Сумма углов треугольника равна 180°:

Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:

Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:

Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна её половине:

Равенство треугольников

Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т. д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:

Третий признак равенства треугольников.

Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:

Подобие треугольников

Подобными называются треугольники, у которых соответствующие стороны пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия:

Два треугольника подобны, если:

    Два угла одного треугольника равны двум углам другого треугольника. Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны. Стороны одного треугольника пропорциональны сторонам другого.

У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:

Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:

Медианы треугольника

Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:

    Медиана делит треугольник на два равновеликих (с равными площадями) треугольника. Три медианы треугольника делят его на шесть равновеликих треугольников:

Длины медиан, проведённых к соответствующим сторонам треугольника, равны:

Биссектрисы треугольника

Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.

Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.

Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:

Длина биссектрисы угла А :

Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.

Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

BL – биссектриса угла В ;

ВЕ – биссектриса внешнего угла СВК :

Высоты треугольника

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Высоты треугольника обратно пропорциональны его сторонам:

Длина высоты, проведённой к стороне а :

Серединные перпендикуляры

Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.

Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.

Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.

Окружность, вписанная в треугольник

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:

Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:

Окружность, описанная около треугольника

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Радиус описанной окружности:

Расположение центра описанной окружности

Равнобедренный треугольник

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.

Основные формулы для равнобедренного треугольника:

Равносторонний треугольник

Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Все углы равностороннего треугольника равны:

Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:

Основные соотношения для элементов равностороннего треугольника

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него есть прямой угол.

Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Прямоугольные треугольники равны если у них равны:

    два катета; катет и гипотенуза; катет и прилежащий острый угол; катет и противолежащий острый угол; гипотенуза и острый угол.
    одному острому углу; из пропорциональности двух катетов; из пропорциональности катета и гипотенузы.

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:

Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:

Площадь прямоугольного треугольника можно определить

Центр описанной окружности совпадает с серединой гипотенузы.

Радиус описанной окружности:

Радиус вписанной окружности:

Вневписанные окружности

Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.

Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Так точка О1 , центр одной из вневписанных окружностей Δ ABC, лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C.

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.

Радиус окружности, описанной около Δ О1О2О3 , равен 2 R, где R – радиус окружности, описанной около Δ ABC.

Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .

Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:

Теорема тангенсов (формула Региомонтана):

Смотрите также:

Давно собирался и вот, наконец! Примерно так выглядит история нашей группы ВКонтакте. Сомнения в необходимости её существования отброшены, и первые материалы сообщества уже выложены.

14 марта 2016 года сайту Математика для школы|math 4 school. ru исполнилось 4 года. Поскольку число 4 для нашего сайта не чужое, мы решили подвести некоторые итоги.

Расширены функциональные возможности главного меню.

Приглашаю посетить Галерею, – новый раздел на сайте.

27 декабря 2015 года исполнилось 444 года со дня рождения Иоганна Кеплера.

Свойства равнобедренного треугольника вписанного в окружность

Math5school. ru

Треугольники

Основные свойства

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.

Сумма углов треугольника равна 180°:

Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:

Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:

Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна её половине:

Равенство треугольников

Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т. д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:

Третий признак равенства треугольников.

Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:

Подобие треугольников

Подобными называются треугольники, у которых соответствующие стороны пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия:

Два треугольника подобны, если:

    Два угла одного треугольника равны двум углам другого треугольника. Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны. Стороны одного треугольника пропорциональны сторонам другого.

У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:

Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:

Медианы треугольника

Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:

    Медиана делит треугольник на два равновеликих (с равными площадями) треугольника. Три медианы треугольника делят его на шесть равновеликих треугольников:

Длины медиан, проведённых к соответствующим сторонам треугольника, равны:

Биссектрисы треугольника

Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.

Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.

Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:

Длина биссектрисы угла А :

Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.

Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

BL – биссектриса угла В ;

ВЕ – биссектриса внешнего угла СВК :

Высоты треугольника

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Высоты треугольника обратно пропорциональны его сторонам:

Длина высоты, проведённой к стороне а :

Серединные перпендикуляры

Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.

Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.

Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.

Окружность, вписанная в треугольник

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:

Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:

Окружность, описанная около треугольника

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Радиус описанной окружности:

Расположение центра описанной окружности

Равнобедренный треугольник

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.

Основные формулы для равнобедренного треугольника:

Равносторонний треугольник

Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Все углы равностороннего треугольника равны:

Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:

Основные соотношения для элементов равностороннего треугольника

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него есть прямой угол.

Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Прямоугольные треугольники равны если у них равны:

    два катета; катет и гипотенуза; катет и прилежащий острый угол; катет и противолежащий острый угол; гипотенуза и острый угол.
    одному острому углу; из пропорциональности двух катетов; из пропорциональности катета и гипотенузы.

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:

Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:

Площадь прямоугольного треугольника можно определить

Центр описанной окружности совпадает с серединой гипотенузы.

Радиус описанной окружности:

Радиус вписанной окружности:

Вневписанные окружности

Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.

Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Так точка О1 , центр одной из вневписанных окружностей Δ ABC, лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C.

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.

Радиус окружности, описанной около Δ О1О2О3 , равен 2 R, где R – радиус окружности, описанной около Δ ABC.

Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .

Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:

Теорема тангенсов (формула Региомонтана):

Смотрите также:

Давно собирался и вот, наконец! Примерно так выглядит история нашей группы ВКонтакте. Сомнения в необходимости её существования отброшены, и первые материалы сообщества уже выложены.

14 марта 2016 года сайту Математика для школы|math 4 school. ru исполнилось 4 года. Поскольку число 4 для нашего сайта не чужое, мы решили подвести некоторые итоги.

Расширены функциональные возможности главного меню.

Приглашаю посетить Галерею, – новый раздел на сайте.

27 декабря 2015 года исполнилось 444 года со дня рождения Иоганна Кеплера.

Свойства равнобедренного треугольника вписанного в окружность

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.

Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

Где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен. Найдите гипотенузу c этого треугольника. В ответе укажите.

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен. Тогда гипотенуза равна.

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что. Поскольку, получаем, что. Тогда.

В ответ запишем.

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что. Угол — тупой. Значит, он равен.

. Боковые стороны равнобедренного треугольника равны, основание равно. Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем. Тогда.

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика. Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

poiskvstavropole.ru

Первая окружность с центром о вписанная в равнобедренный треугольник klm

1)пусть треугольник имеет углы A и B(прямой угол C), центр вписанной окружности-точка пересечения биссектрисс=> треугольник AOB имеет углы A/2 и B/2, а их сумма равна 90/2=45 грудсов ==> угол AOB=180-45=135 градусов. 2)по теореме косинусов. x-гипотенуза. x?=AO?+OB?-2*OA*OB*cos135.

Первая окружность с центром о вписанная в равнобедренный треугольник klm

На сайте не работают какие-то кнопки? Отключите Адблок.

Из школы 162 Кировского района Петербурга;

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.

А) Докажите, что треугольник OLO1 прямоугольный.

Б) Найдите радиус второй окружности, если известно, что радиус первой равен 15 и AK = 32.

А) Пусть окружность с центром O1 касается продолжения боковой стороны KL в точке C. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому LO и LO1 — биссектрисы смежных углов KLM и CLM. Следовательно, ∠OLO1 = 90°.

Б) Прямоугольные треугольники KBO и KAL подобны, поэтому

Пусть радиус окружности с центром O1 равен R1. Треугольник KLM

Равнобедренный, поэтому окружности с центрами O и O1 касаются основания ML в одной и той же точке A. Значит, точка A лежит на отрезке OO1, причём LA — высота прямоугольного треугольника OLO1, проведённая из вершины прямого угла. Следовательно,

Первая окружность с центром о вписанная в равнобедренный треугольник klm

Первая окружность с центром о вписанная в равнобедренный треугольник klm

На сайте не работают какие-то кнопки? Отключите Адблок.

Из школы 162 Кировского района Петербурга;

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.

А) Докажите, что треугольник OLO1 прямоугольный.

Б) Найдите радиус второй окружности, если известно, что радиус первой равен 15 и AK = 32.

А) Пусть окружность с центром O1 касается продолжения боковой стороны KL в точке C. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому LO и LO1 — биссектрисы смежных углов KLM и CLM. Следовательно, ∠OLO1 = 90°.

Б) Прямоугольные треугольники KBO и KAL подобны, поэтому

Пусть радиус окружности с центром O1 равен R1. Треугольник KLM

Равнобедренный, поэтому окружности с центрами O и O1 касаются основания ML в одной и той же точке A. Значит, точка A лежит на отрезке OO1, причём LA — высота прямоугольного треугольника OLO1, проведённая из вершины прямого угла. Следовательно,

Первая окружность с центром о вписанная в равнобедренный треугольник klm

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O_1 касается основания ML и продолжений боковых сторон. а) Докажите, что треугольник OLO_1 прямоугольный. б) Найдите радиус второй окружности, если известно, что радиус первой равен 6 и AK =16 .

Ответы и объяснения

    Hrisula главный мозг

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.

А) Докажите, что треугольник OLO1 прямоугольный.

б) Найдите радиус второй окружности, если известно, что радиус первой равен 6 и AK =16

Пусть окружность с центром О1 касается продолжения KL в точке С.

Обе окружности вписаны в один и тот же угол МАL. Центр вписанной в угол окружности лежит на его биссектрисе.

Треугольник MKL — равнобедренный, следовательно, АК — его биссектриса и высота,⇒

АК⊥ML. Т. к. центры обеих окружностей лежат на АК

А угол КАМ — прямоугольный, то ML — общая касательная, и точка А — общая точка касания.

В то же время эти окружности вписаны в углы КLA и CLA соответственно, и центры окружностей лежат на биссектрисе LO — для вписанной в треугольник окружности с центром О, и биссектрисе LO1- для вневписанной окружности с центром О1.

Угол KLC — развернутый, поэтому углы КLA CLA — смежные.

LO и LО1- биссектрисы углов КLA и ALC и делят их пополам, а сумма половин смежных углов равна 90º.⇒

Угол ОLО1=90º, что и требовалось доказать.

Треугольник ОLO1 прямоугольный. АL в нем высота ( т. к. угол О1АL=90º).

Высота, проведенная из прямого угла к гипотенузе — среднее пропорциональное между отрезками, на которые она делит гипотенузу, а в нашем случае — между радиусами обеих окружностей.

Длина AL неизвестна, но ее можно найти.

Из ⊿ КВО по т. Пифагора найдем КВ=8 ( кстати, отношение катета ОВ к гипотенузе КО=3:5 – треугольник египетский).

В ⊿ КАL отрезки АL = BL — отрезки касательных из одной точки ( свойство).

poiskvstavropole.ru

Как найти радиус окружности вписанной в равнобедренный треугольник

Скачать: Контрольные работы к учебнику Петерсон Л.Г. и Моро М.И для 2 класса (PDF) Обучающие. Контрольная работа №3 «Часть 2. Уроки 1-12». Вариант I. 1. Реши пример и найди значение Х. Распиши ответы, после каждого действия. x — 23 + 5 — 18 +. Найдите значение выражения:

Радиус вписанной окружности равнобедренного треугольника

(a, b — стороны равнобедренного треугольника;

R — радиус вписанной окружности равнобедренного треугольника) После подстановок, преобразований и упрощений получается следующая формула:

Как найти радиус окружности вписанной в равнобедренный треугольник

Совет 1: Как найти радиус вписанной окружности в равнобедренном треугольнике?

    Как найти радиус вписанной окружности в равнобедренном треугольнике? Как вписать четырехугольник в окружность в 2018 году Как описать многоугольник

Следует отметить, что равнобедренным называется тот треугольник, у которого две боковые стороны равны. Углы при основании этого треугольника должны быть тоже равны. Такой треугольник, одновременно, можно вписать в окружность и описать около нее.

Угол y между двумя равными сторонами найдите исходя из того, что в равнобедренном треугольнике два угла равны. Соответственно, третий угол равен y=180-(a+b).

R=(p-a)(p-b)(p-c)/p, где p=a+b+c/2 — сумма всех сторон, разделенных пополам, или полупериметр.

Если в окружность вписан равнобедренный треугольник, то в таком случае гораздо легче находить радиус окружности. При знании радиуса окружности, можно найти такие важные параметры, как площадь круга и длина окружности. Если в задании, наоборот, дан радиус окружности — это является, в свою очередь, предпосылкой к нахождению сторон треугольника. Найдя стороны треугольника, можно вычислить его площадь и периметр. Эти вычисления широко применяются во многих инженерных задачах. Планиметрия — это базовая наука, с помощью которой изучают более сложные геометрические вычисления.

    равнобедренный треугольник и вписанная окружность

Совет 2: Как найти радиус описанной окружности

    Знать стороны многоугольника, его площадь/периметр.

Если окружность описана вокруг треугольника со сторонами a, b, c, площадью S и углом?, лежащим против стороны a, то ее радиус R может быть рассчитан по следующим формулам:

Для расчета радиуса Окружности, описанной вокруг правильного многоугольника, нужно воспользоваться следующей формулой:

R = a/(2 x sin (360 / (2 x n))), где

A — сторона правильного многоугольника;

Тезис, гласящий, что центром описанной вокруг многоугольника окружности является пересечение его серединных перпендикуляров, справедлив для всех правильных многоугольников.

    как найти радиус многоугольника

Совет 3: Как найти высоту в равнобедренном треугольнике

По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE одновременно и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).

Если задан угол при основании ABC, то из прямоугольного треугольника высота AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE — биссектриса треугольника. Отсюда, AE = AB/cos(BAC/2).

Пусть S — площадь этого треугольника. Сторону AC, на которую опущена высота, можно обозначить за b. Тогда из формулы площади треугольника будет находиться длина высоту BK: BK = 2S/b.

    высоты равнобедренного треугольника

Совет 4: Как найти длину окружности круга

Совет 5: Как найти угол в равнобедренном треугольнике

    Стороны равнобедренного треугольника, один из углов, радиус описанной вокруг треугольника окружности.

Β = π — 2*π. π — это константа, ее размер принято считать равной 3.14.

Совет 6: Как найти длину стороны в равнобедренном треугольнике

    как вычислить сторону равнобедренного треугольника

Совет 7: Как найти третий угол в треугольнике

    Таблицы Брадиса для нахождения величин тригонометрических функций в 2018

Совет 8: Как найти неизвестную сторону в треугольнике

    — треугольник с заданными параметрами; — калькулятор; — ручка; — карандаш; — транспортир; — лист бумаги; — компьютер с программой AutoCAD; — теоремы синусов и косинусов.
    неизвестная сторона треугольника в 2018

Совет 9: Как найти длину вписанной окружности

Совет 10: Как вписать треугольник в круг

    — циркуль; — бумага; — карандаш; — линейка.
    круг вписанный в треугольник

Совет 11: Как найти центр вписанной окружности

    — многоугольник; — угол заданного размера; — окружность с заданным радиусом; — циркуль; — линейка; — карандаш; — калькулятор.

Совет 12: Как найти длину вписанной окружности в треугольник

Совет 13: Как найти длину высоты в равнобедренном треугольнике

Совет 14: Как вычислять длину окружности и площадь круга

    нахождение площади круга и длины окружности

Совет 15: Как найти угол между касательными

Как найти радиус окружности вписанной в равнобедренный треугольник

Совет 1: Как найти радиус вписанной окружности в равнобедренном треугольнике?

    Как найти радиус вписанной окружности в равнобедренном треугольнике? Как вписать четырехугольник в окружность в 2018 году Как описать многоугольник

Следует отметить, что равнобедренным называется тот треугольник, у которого две боковые стороны равны. Углы при основании этого треугольника должны быть тоже равны. Такой треугольник, одновременно, можно вписать в окружность и описать около нее.

Угол y между двумя равными сторонами найдите исходя из того, что в равнобедренном треугольнике два угла равны. Соответственно, третий угол равен y=180-(a+b).

R=(p-a)(p-b)(p-c)/p, где p=a+b+c/2 — сумма всех сторон, разделенных пополам, или полупериметр.

Если в окружность вписан равнобедренный треугольник, то в таком случае гораздо легче находить радиус окружности. При знании радиуса окружности, можно найти такие важные параметры, как площадь круга и длина окружности. Если в задании, наоборот, дан радиус окружности — это является, в свою очередь, предпосылкой к нахождению сторон треугольника. Найдя стороны треугольника, можно вычислить его площадь и периметр. Эти вычисления широко применяются во многих инженерных задачах. Планиметрия — это базовая наука, с помощью которой изучают более сложные геометрические вычисления.

    равнобедренный треугольник и вписанная окружность

Совет 2: Как найти радиус описанной окружности

    Знать стороны многоугольника, его площадь/периметр.

Если окружность описана вокруг треугольника со сторонами a, b, c, площадью S и углом?, лежащим против стороны a, то ее радиус R может быть рассчитан по следующим формулам:

Для расчета радиуса Окружности, описанной вокруг правильного многоугольника, нужно воспользоваться следующей формулой:

R = a/(2 x sin (360 / (2 x n))), где

A — сторона правильного многоугольника;

Тезис, гласящий, что центром описанной вокруг многоугольника окружности является пересечение его серединных перпендикуляров, справедлив для всех правильных многоугольников.

    как найти радиус многоугольника

Совет 3: Как найти высоту в равнобедренном треугольнике

По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE одновременно и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).

Если задан угол при основании ABC, то из прямоугольного треугольника высота AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE — биссектриса треугольника. Отсюда, AE = AB/cos(BAC/2).

Пусть S — площадь этого треугольника. Сторону AC, на которую опущена высота, можно обозначить за b. Тогда из формулы площади треугольника будет находиться длина высоту BK: BK = 2S/b.

    высоты равнобедренного треугольника

Совет 4: Как найти длину окружности круга

Совет 5: Как найти угол в равнобедренном треугольнике

    Стороны равнобедренного треугольника, один из углов, радиус описанной вокруг треугольника окружности.

Β = π — 2*π. π — это константа, ее размер принято считать равной 3.14.

Совет 6: Как найти длину стороны в равнобедренном треугольнике

    как вычислить сторону равнобедренного треугольника

Совет 7: Как найти третий угол в треугольнике

    Таблицы Брадиса для нахождения величин тригонометрических функций в 2018

Совет 8: Как найти неизвестную сторону в треугольнике

    — треугольник с заданными параметрами; — калькулятор; — ручка; — карандаш; — транспортир; — лист бумаги; — компьютер с программой AutoCAD; — теоремы синусов и косинусов.
    неизвестная сторона треугольника в 2018

Совет 9: Как найти длину вписанной окружности

Совет 10: Как вписать треугольник в круг

    — циркуль; — бумага; — карандаш; — линейка.
    круг вписанный в треугольник

Совет 11: Как найти центр вписанной окружности

    — многоугольник; — угол заданного размера; — окружность с заданным радиусом; — циркуль; — линейка; — карандаш; — калькулятор.

Совет 12: Как найти длину вписанной окружности в треугольник

Совет 13: Как найти длину высоты в равнобедренном треугольнике

Совет 14: Как вычислять длину окружности и площадь круга

    нахождение площади круга и длины окружности

Совет 15: Как найти угол между касательными

poiskvstavropole.ru