Дроби: история дробей. История возникновения обыкновенных дробей. Все про все дроби


Дроби

Дроби это тема, об которую спотыкается половина жителей нашей планеты. Если спросить у людей с какой темы у них начались проблемы с математикой, то большинство из них ответят — с дробей.

Этих людей нельзя упрекнуть. Дроби действительно тема не из простых. Тема дробей требует много терпения и внимания, особенно если человек изучает её впервые.

Но есть и хорошие новости. Если вы наберётесь терпения и освоите дроби, то уверяем, что дальнейшее изучение математики станет для вас простым и интересным.

А если вы ещё хорошо изучили предыдущий урок, который назывался деление, то можете быть уверены, что дроби вы освоили уже наполовину.

Что такое дробь?

Если говорить простым языком, то дробь это часть чего-либо. Это «чего-либо» может быть чем угодно — едой, деньгами, числом. В народе дробь называют долей. Само слово «дробь» тоже говорит за себя — дробь означает дробление, деление, разделение.

Рассмотрим пример из жизни. Мы купили себе пиццу, чтобы съесть её в течении дня. Допустим мы решили разделить её на четыре части, чтобы съедать постепенно по одному кусочку.

Посмотрите на этот рисунок. Представьте, что это наша пицца, разделённая на четыре куска. Каждый кусок пиццы это и есть дробь, потому что каждый кусок по отдельности это часть пиццы.

Допустим мы съели один кусок. Как его записать? Очень просто. Сначала рисуется маленькая линия:

Внизу этой линии записывается на сколько кусков пицца была разделена. Пицца была разделена на четыре куска. Значит внизу линии записывается четвёрка:

А сверху этой линии записывается сколько кусков пиццы было съедено. Съеден был один кусок, значит сверху записываем единицу:

Такие записи называют дробями. Дробь состоит из числителя и знаменателя.

Число, которое записывается сверху, называется числителем дроби.

Число, которое записывается снизу, называется знаменателем дроби.

В нашем примере числитель дроби это единица, а знаменатель дроби — четвёрка. Эту дробь можно прочитать так: «одна четвёртая» либо «один кусок из четырёх» либо «одна четвёртая доля» либо «четверть» — всё это синонимы.

Теперь представьте, что мы съели ещё один кусок той же самой пиццы, которая была разделена на четыре куска. Как записать такую дробь?

Очень просто. Сверху записываем 2 (поскольку уже съедено два куска), а внизу записываем 4 (поскольку всего кусков было 4):

Эта дробь читается так: «две четвёртых» либо «два куска из четырёх» либо «две четвёртые доли».

Теперь представьте, что пиццу мы разделили не на четыре части, а на три.

Допустим мы съели один кусок этой пиццы. Как записать такую дробь?

Очень просто. Опять же рисуется маленькая линия. Внизу этой линии записывается число 3, поскольку пицца разделена на три части, а сверху этой линии записывается число 1, поскольку съеден один кусок:

Эта дробь читается так: «Одна третья» либо «Один кусок из трёх» либо «Одна третья доля» либо «Треть».

Если мы съедим два куска пиццы, то такая дробь будет называться «две третьих» и записываться следующим образом:

Теперь представьте, что пиццу мы разделили на две части или, как говорят в народе: «Пополам»:

Допустим из этих двух кусков мы съели один кусок. Как записать такую дробь?

Очень просто. Опять же рисуем линию. Внизу этой линии записываем число 2, поскольку пицца разделена на две части, а вверху записываем число 1, поскольку съеден один кусок:

Эта дробь читается так: «одна вторая» либо «один кусок из двух» либо «одна вторая доля» либо «половина».

Дроби, которые мы сейчас рассмотрели, называют обыкновенными. Почему обыкновенными? Потому что дроби бывают двух видов: обыкновенные и десятичные. На данный момент мы рассматриваем обыкновенные дроби. Десятичные будем рассматривать немного позже. Обыкновенная дробь эта та дробь, которая состоит из числителя и знаменателя.

Знаменатель дроби — это число, которое показывает на сколько равных частей можно что-либо разделить. Вернёмся к нашей пицце. Поровну эта пицца может быть разделена и на 2 части и на 3, и на 4, и на 5, и на 6. В зависимости от того, на сколько частей мы будем делить пиццу, знаменатель будет меняться.

На следующем рисунке представлены три пиццы, которые разделены по разному. Если говорить о дробях, то у первой пиццы знаменателем будет 2. У второй пиццы знаменателем будет 3. У третьей пиццы знаменателем будет 4.

Числитель же показывает сколько частей взято от чего-либо. К примеру, если разделить пиццу на две части, как на первом рисунке, и взять одну часть для трапезы, то получится что мы взяли (одну часть из двух) или, как говорят в народе: «половину» пиццы.

С помощью переменных дробь можно записать так:

где a — это числитель, b — знаменатель.

Следующая вещь, которую важно знать это то, что обыкновенные дроби бывают правильные и неправильные.

Правильная дробь — это дробь, у которой числитель меньше знаменателя. Например, следующие дроби являются правильными:

Почему такие дроби называют правильными? Вспомним, что дробь это часть чего-либо. Ведь будет логичнее, если эта часть будет меньше того, откуда эта часть была взята. Например, если пицца разделена на четыре части, и мы возьмём (одну четвёртую), то наш кусок будет меньше, чем все четыре куска вместе взятые (чем одна целая пицца). Поэтому такие дроби называют правильными.

С неправильной дробью всё с точностью наоборот. Неправильная дробь — это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными:

Видно, что у этих дробей числитель больше знаменателя. Почему же такие дроби называют неправильными? Вспомним, что дробь это часть чего-либо. Знаменатель показывает на сколько частей это «чего-либо» разделено. А числитель показывает сколько этого «чего-либо» взяли.

Теперь возьмём к примеру неправильную дробь  и применим её к нашей пицце. В знаменателе стоит 2, значит пицца разделена на две части, а в числителе стоит 9. Получается, что взято девять кусков из двух. Но как можно взять девять кусков, если их всего два? Ответ — никак. Поэтому такие дроби называют неправильными.

Дробь, у которой числитель и знаменатель одинаковые, тоже называют неправильной. Например:

Вообще, такие дроби даже не имеют права называться дробями. И вот почему. Рассмотрим к примеру дробь . Применим её к нашей пицце.

Допустим мы хотим съестьпиццы.  В знаменателе стоит число 2, значит пицца разделена на две части. И в числителе стоит 2, значит взято две части. По сути, взята вся целая пицца, и если мы съедим этупиццы, то съедим не часть пиццы, а всю пиццу целиком. Иными словами, съедим не дробь, а целую часть пиццы. Поэтому дробь, у которой числитель и знаменатель одинаковые, называют неправильной.

Дробь означает деление

Черта в дроби, которая отделяет числитель от знаменателя, означает деление. Она говорит, что числитель можно разделить на знаменатель.

Например, рассмотрим дробь . Дробная черта говорит, что четвёрку можно разделить на двойку. Мы знаем, что четыре разделить на два будет два. Ставим знак равенства (=) и записываем ответ:

Можно сделать вывод, что любое деление чисел можно записать с помощью дробей. Например:

Это простейшие примеры. Видно, что у них отсутствует остаток. С остатком немного сложнее, зато интереснее. Поговорим об этом в следующей теме, которая называется «выделение целой части дроби».

Выделение целой части дроби

Вычислим дробь . Пять разделить на два будет два и один в остатке:

5 : 2 = 2 (1 в остатке)

Проверка: (2 × 2) + 1 = 4 + 1 = 5

Но сейчас мы имеем дело с дробями, значит и отвечать надо в дробном виде. Чтобы хорошо понять, как это делается, рассмотрим пример из жизни.

Представьте, что у вас есть 5 яблок и вы решили поделиться ими со своим другом. Причём поделиться по-честному, чтобы каждому досталось поровну. Как разделить эти 5 яблок?

Очевидно, что каждому из вас достанется по два яблока, а оставшееся одно яблоко вы разрежете ножом пополам и тоже разделите между собой:

Посмотрите внимательно на этот рисунок. На нём показано, как пять яблок разделены между вами и вашим другом. Очевидно, что каждому досталось по два целых яблока и по половинке яблока.

Теперь возвращаемся к дроби и отвечаем на её вопрос. Сколько будет пять разделить на два? Смотрим на наш рисунок и отвечаем: если пять яблок разделить на двоих, то каждому достанется два целых яблока и половинка яблока. Так и записываем:

Схематически это выглядит так:

Процедуру, которую мы сейчас провели, называют выделением целой части дроби.

В нашем примере мы выделили целую часть дроби  и получили новую дробь .  Такую дробь называют смешанной. Смешанная дробь это дробь, у которой есть целая часть и дробная.

В нашем примере целая часть это 2, а дробная часть это

Обязательно запомните эти понятия! А лучше запишите в свою рабочую тетрадь.

Выделить целую часть можно только у неправильных дробей. Напомним, что неправильная дробь это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными, и у них выделена целая часть:

Чтобы выделить целую часть, достаточно знать, как делить числа уголком. Например, выделим целую часть у дроби . Записываем уголком данное выражение и решаем:

После того, как решение примера завершается, новую дробь собирают подобно детскому конструктору. Главное понять, что куда отнести. Частное относят к целой части, остаток относят в числитель дробной части, делитель относят в знаменатель дробной части.

В принципе, если вы хорошо знаете таблицу умножения, и можете быстро в уме выполнять элементарные вычисления, то можно обойтись без записей уголком. В школах кстати, именно этого и требуют — чтобы учащиеся не тратили время на простые операции, а сразу записывали ответы.

Но если вы только начинаете изучать математику, советуем записывать каждую мелочь.

Рассмотрим ещё один пример на выделение целой части. Пусть требуется выделить целую часть дроби 

Записываем уголком данное выражение и решаем. Потом собираем смешанную дробь:

Получили:

Перевод смешанного числа в неправильную дробь

Любое смешанное число получается в результате выделения целой части в неправильной дроби. Например, рассмотрим неправильную дробь . Если выделить в ней целую часть, то получается

Но возможен и обратный процесс — любое смешанное число можно перевести в неправильную дробь. Для этого целую часть надо умножить на знаменатель дробной части и полученный результат прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель останется без изменения.

Например, переведём смешанное число в неправильную дробь. Умножаем целую часть 2 на знаменатель дробной части:

2 × 3 = 6

Затем к 6 прибавляем числитель дробной части:

6 + 1 = 7

Полученная семёрка будет числителем новой дроби, а знаменатель 3 останется без изменения:

Подробное решение выглядит так:

А с помощью переменных перевод смешанного числа в неправильную дробь можно записать так:

Пример 2. Перевести смешанное число в неправильную дробь.

Умножаем целую часть смешанного числа на знаменатель дробной части и прибавляем к числителю дробной части, а знаменатель оставляем без изменения:

Основное свойство дроби

Основное свойство дроби говорит о том, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь. Что это значит? Это значит, что значение дроби не изменится.

Например, рассмотрим дробь .  Умножим её числитель и знаменатель на одно и то же число, например на число 2:

Получили новую дробь .  Если верить основному свойству дроби, то дроби   и  равны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:

Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь (один кусок из двух), а второй иллюстрирует дробь  (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на два куска, и с неё взяли один кусок. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.

Поэтому между дробями и  можно поставить знак равенства (=), поскольку они равны одному и тому же значению:

Теперь испытаем основное свойство дроби, разделив числитель и знаменатель на одно и то же число.

Рассмотрим дробь  . Давайте разделим её числитель и знаменатель на одно и то же число, например на число 2

Получили новую дробь . Если верить основному свойству дроби, то дроби и  равны между собой. Так ли это? Давайте проверим,  нарисовав эти дроби в виде кусочков пиццы:

Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь (четыре куска из восьми), а второй иллюстрирует дробь  (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на восемь кусков, и с неё взяли четыре куска. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.

Поэтому между дробями  и  можно поставить знак равенства (=), поскольку они равны одному и тому же значению:

Теперь мы полностью проверили, как работает основное свойство дроби, и убедились, что работает оно замечательно.

Число, на которое умножается числитель и знаменатель, называется дополнительным множителем. Запомните это обязательно!

Сокращение дробей

Дроби можно сокращать. Сократить — значит сделать дробь короче и проще для восприятия. Например, дробь выглядит намного проще и красивее, чем дробь .

Если при решении примеров получается большая некрасивая дробь, то нужно пытаться её сократить.

Сокращение дроби опирается на основное свойство дроби. Поэтому, прежде чем изучать сокращение дробей, обязательно изучите основное свойство дроби.

Деление числителя и знаменателя на их наибольший общий делитель называется сокращением дроби.

Пример 1.  Сократим дробь . Надо разделить числитель и знаменатель на наибольший общий делитель чисел 2 и 4.

В данном случае, дробь простая и для неё НОД ищется легко. НОД { 2 и 4 } это 2. Значит числитель и знаменатель дроби надо разделить на двойку. Итак, делим числитель и знаменатель на 2:

Пример 2. Сократим дробь . Чтобы сократить эту дробь, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 20 и 40. НОД { 20 и 40 } это 20. Значит делим числитель и знаменатель дроби на 20:

Пример 3. Сократим дробь . Чтобы сократить эту дробь, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 32 и 36. НОД { 32 и 36 } это 4. Значит делим числитель и знаменатель дроби на 4:

Если в числителе и знаменателе стоят простые числа, то такую дробь сократить нельзя — она не сокращается. Такие дроби называют несократимыми. Например, следующие дроби являются несократимыми:

Напомним, что простыми называются числа, которые делятся только на единицу и самих себя.

Второй способ сокращения дроби

Второй способ является короткой версией первого способа. Суть данного способа заключается в том, что пропускается подробное разъяснение того, на что был разделён числитель и знаменатель.

К примеру, вернёмся к дроби . Эту дробь мы сократили на 4, то есть разделили числитель и знаменатель этой дроби на число 4

Теперь представьте, что в данном выражении отсутствует конструкция , и сразу записан ответ . Получится следующее выражение:

Суть в том, что число на которое разделили числитель и знаменатель хранят в уме. В нашем случае, числитель и знаменатель делят на 4 — это число и будем хранить в уме.

Сначала делим числитель на число 4. Полученный ответ записывают рядом с числителем, предварительно зачеркнув его:

Затем, точно так же делят знаменатель на число 4. Полученный ответ записывают рядом со знаменателем, предварительно зачеркнув его:

Затем собирают новую дробь. В числитель отправляют новое число 8 вместо 32, а в знаменатель отправляют новое число 9 вместо 36

Происходит своего рода замена одной дроби на другую. Значение новой дроби равно значению предыдущей дроби, поскольку срабатывает основное свойство дроби, которое говорит о том, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь.

Также, дроби можно сокращать, предварительно разложив на простые множители числитель и знаменатель.

Например, сократим дробь предварительно разложив на простые множители числитель и знаменатель:

Итак, мы разложили числитель и знаменатель дроби  на множители. Теперь применяем второй способ сокращения. В числителе и в знаменателе выбираем по множителю и делим выбранные множители на НОД этих множителей.

Давайте сократим по тройке в числителе и в знаменателе. Для этого разделим эти тройки на 3 (на их наибольший общий делитель). Получим следующее выражение:

Сократить можно ещё по тройке в числителе и в знаменателе:

Дальше сокращать больше нечего. Последнюю тройку в знаменателе просто так сократить нельзя, поскольку в числителе нет множителя, которого можно было бы сократить вместе с этой тройкой.

Записываем новую дробь, в числителе и в знаменателе которой будут новые множители.

 Получили ответ . Значит при сокращении дроби получается новая дробь .

Не рекомендуется пользоваться вторым способом сокращения дроби и способом разложения на простые множители числителя и знаменателя, если вы только начинаете изучать математику. Практика показывает, что это оказывается сложным на первых этапах.

Поэтому, если испытываете затруднения при использовании второго способа, то пользуйтесь старым добрым способом сокращения: делите числитель и знаменатель дроби на их наибольший общий делитель. Выражение в таком случае получается простым, понятным и красивым. Так, предыдущий пример может быть решен старым способом и будет выглядеть так:

Сравните это выражение с выражением, которое мы получили, когда пользовались вторым способом:

Первое выражение намного понятнее, аккуратнее и короче. Не правда ли?

Задания для самостоятельного решения

Задание 1. Запишите в виде дроби следующий рисунок:

Задание 2. Запишите в виде дроби следующий рисунок:

Задание 3. Запишите в виде дроби следующий рисунок:

Задание 4. Запишите в виде дроби следующий рисунок:

Задание 5. Запишите в виде дроби следующий рисунок:

Задание 6. Выделите целые части в следующих дробях:

Задание 7. Выделите целые части в следующих дробях:

Задание 8. Переведите смешанные дроби в неправильные:

Задание 9. Переведите смешанные дроби в неправильные, не расписывая как целая часть умножается на знаменатель дробной части и полученный результат складывается с числителем дробной части

Задание 10. Сократите следующую дробь на 3

Задание 11. Сократите следующую дробь на 3 вторым способом

Задание 12. Сократите следующую дробь на 5

Задание 13. Сократите следующую дробь на 5 вторым способом

Задание 14. Сократите следующие дроби:

Задание 15. Сократите следующие дроби вторым способом:

Задание 16. Запишите в виде дроби следующий рисунок:

Задание 17. Запишите в виде дроби следующий рисунок:

Задание 18. Запишите в виде дроби следующий рисунок:

Задание 19. Запишите в виде дроби следующий рисунок:

Задание 20. Запишите в виде дроби следующий рисунок:

Задание 21. Изобразите в виде рисунка следующую дробь:

Задание 22. Изобразите в виде рисунка следующую дробь:

Задание 23. Изобразите в виде рисунка следующую дробь:

Задание 24. Изобразите в виде рисунка следующую дробь:

Задание 25. Изобразите в виде рисунка следующую дробь:

Задание 26. Изобразите в виде рисунка следующую дробь:

Задание 27. Изобразите в виде рисунка следующую дробь:

Задание 28. Изобразите в виде рисунка следующую дробь:

Задание 29. Изобразите в виде рисунка следующую дробь:

Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Навигация по записям

spacemath.xyz

это что такое? Виды дробей :: SYL.ru

Изучая царицу всех наук – математику, в определенный момент все сталкиваются с дробями. Хотя это понятие (как и сами виды дробей или математические действия с ними) совсем несложное, к нему нужно относиться внимательно, ведь в реальной жизни за пределами школы оно очень пригодится. Итак, давайте освежим свои знания о дробях: что это, для чего нужно, какие виды их бывают и как совершать с ними различные арифметические действия.

Ее величество дробь: это что такое

Дробями в математике называются числа, каждое из которых состоит из одной или более частей единицы. Такие дроби еще называют обыкновенными, либо простыми. Как правило, они записываются​ в виде двух чисел, которые разделены горизонтальной или слеш-чертой, она называется «дробной». Например: ½, ¾.

Верхнее, или первое из этих чисел – это числитель (показывает, сколько взято долей от числа), а нижнее, или второе – знаменатель (демонстрирует, на столько частей разделена единица).

Дробная черта фактически выполняет функции знака деления. К примеру, 7:9=7/9

Традиционно обыкновенные дроби меньше единицы. В то время как десятичные могут быть больше ее.

Для чего нужны дроби? Да для всего, ведь в реальном мире далеко не все числа целые. К примеру, две школьницы в столовой купили в складчину одну вкусную шоколадку. Когда они уже собрались делить десерт, встретили подружку и решили угостить и и ее. Однако теперь необходимо правильно разделить шоколадку, если учесть, что она состоит из 12 квадратиков.

Поначалу девчонки хотели разделить все поровну, и тогда каждой бы досталось по четыре кусочка. Но, раздумав, они решили угостить подружку, не 1/3, а 1/4 шоколадки. А поскольку школьницы плохо изучали дроби, то они не учли, что при подобном раскладе в результате у них останется 9 кусочков, которые очень плохо делятся на двоих. Этот довольно простой пример показывает, насколько важно уметь правильно находить часть от числа. А ведь в жизни подобных случаев гораздо больше.

Виды дробей: обыкновенные и десятичные

Все математические дроби делятся на два больших разряда: обыкновенные и десятичные. Об особенностях первого из них было рассказано в предыдущем пункте, так что теперь стоит уделить внимание второму.

Десятичной называют позиционную запись дроби числа, которая фиксируется на письме через запятую, без черточки или слеша. Например: 0,75, 0,5.

Фактически десятичная дробь идентична обыкновенной, однако, в ее знаменателе всегда единица с последующими нулями – отсюда произошло и ее название.

Число, предшествующее запятой, – это целая часть, а все находящееся после - дробная. Любую простую дробь можно перевести в десятичную. Так, указанные в предыдущем примере десятичные дроби можно записать как обычные: ¾ и ½.

Стоит отметить, что и десятичные, и обыкновенные дроби могут быть как положительными, так и отрицательными. Если перед ними стоит знак "-", данная дробь отрицательная, если "+" - то положительная.

Подвиды обыкновенных дробей

Есть такие виды дробей простых.

  • Правильные. У них значение числителя всегда меньше, чем у знаменателя. Например: 7/8. Это правильная дробь, поскольку числитель 7 меньше, чем знаменатель 8.
  • Неправильные. В таких дробях либо числитель и знаменатель равны между собою (8/8), либо значение нижнего числа меньше, нежели верхнего (9/8).
  • Смешанная. Так называется правильная дробь, записанная вместе с целым числом: 8 ½. Она понимается как сумма этого числа и дроби. Кстати, довольно просто можно сделать так, чтобы на ее месте появилась неправильная дробь. Для этого 8 нужно записать как 16/2+1/2=17/2.
  • Составные. Как понятно из названия, они состоят из нескольких дробных черт: ½ / ¾.
  • Сократимые/несократимые. К ним может относиться как правильная, так и неправильная дробь. Все зависит от того, можно ли разделить числитель и знаменатель на одно и то же число. К примеру, 6/9 является сократимой дробью, ведь оба ее составляющих можно поделить на 3 и получится 2/3. А вот 7/9 относится к несократимым, поскольку 7 и 9 – простые числа, которые не имеют общего делителя и не могут быть сокращены.

Подвиды десятичной дроби

В отличие от простой, десятичная дробь делится всего на 2 вида.

  • Конечная - получила такое название из-за того, что после запятой у нее ограниченное (конечное) число цифр: 19,25.
  • Бесконечная дробь – это число с нескончаемым количеством цифр после запятой. К примеру, при делении 10 на 3 результатом будет бесконечная дробь 3,333…

Сложение дробей

Проводить различные арифметические манипуляции с дробями немного сложнее, чем с обычными числами. Однако, если усвоить основные правила, решить любой пример с ними не составит особого труда.

Итак, чтобы сложить между собою дроби, прежде всего, нужно сделать так, чтобы у обоих слагаемых были одинаковые знаменатели. Для этого предстоит найти наименьшее число, которое способно поделиться без остатка на знаменатели слагаемых чисел.

Например: 2/3+3/4. Наименьшим общим кратным для них будет 12, следовательно, необходимо, чтобы в каждом знаменателе стояло это число. Для этого числитель и знаменатель первой дроби умножаем на 4, получается 8/12, аналогично поступаем со вторым слагаемым, но только множим на 3 – 9/12. Теперь можно легко решить пример: 8/12+9/12= 17/12. Получившаяся дробь – это неправильная величина, поскольку числитель больше знаменателя. Ее можно и нужно пребразовать в правильную смешанную, разделив 17:12= 1 и 5/12.

В случае, если слагаются смешанные дроби, сначала действия совершаются с целыми числами, а потом с дробными.

Если в примере присутствует десятичная дробь и обычная, необходимо, чтобы обе стали простыми, потом привести их к одному знаменателю и сложить. К примеру 3,1+1/2. Число 3,1 можно записать как смешанную дробь 3 и 1/10 или как неправильную - 31/10. Общим знаменателем для слагаемых будет 10, поэтому нужно умножить поочередно числитель и знаменатель 1/2 на 5, получается 5/10. Далее можно легко все высчитать: 31/10+5/10=35/10. Полученный результат - неправильная сократимая дробь, приводим ее в нормальный вид, сократив на 5: 7/2=3 и 1/2, или десятичной - 3,5.

Если слагать 2 десятичные дроби, важно, чтобы после запятой было одинаковое количество цифр. Если это не так, нужно просто дописать необходимое количество нулей, ведь в десятичной дроби это можно сделать безболезненно. Например, 3,5+3,005. Чтобы решить это задание, нужно к первому числу прибавить 2 ноля и далее поочередно слагать: 3,500+3,005=3,505.

Вычитание дробей

Вычитая дроби, стоит поступать так же, как и при сложении: свести к общему знаменателю, отнять один числитель от другого, при необходимости перевести результат в смешанную дробь.

Например: 16/20-5/10. Общим знаменателем будет 20. Нужно привести вторую дробь к этому знаменателю, умножив обе ее части на 2, получается 10/20. Теперь можно решать пример: 16/20-10/20= 6/20. Однако этот результат относится к сократимым дробям, поэтому стоит поделить обе части на 2 и получается результат – 3/10.

Умножение дробей

Деление и умножение дробей – значительно более простые действия, нежели сложение и вычитание. Дело в том, что, выполняя эти задания, нет необходимости искать общий знаменатель.

Чтобы умножить дроби, нужно просто поочередно перемножить между собою оба числителя, а затем и оба знаменателя. Получившийся результат сократить, если дробь – это сократимая величина.

Например: 4/9х5/8. После поочередного умножения получается такой результат 4х5/9х8=20/72. Такая дробь сократима на 4, поэтому конечный ответ в примере – 5/18.

Как делить дроби

Деление дробей - тоже несложное действие, фактически оно все равно сводится к их умножению. Чтобы разделить одну дробь на другую, нужно вторую перевернуть и умножить на первую.

Например, деление дробей 5/19 и 5/7. Чтобы решить пример, нужно поменять местами знаменатель и числитель второй дроби и умножить: 5/19х7/5=35/95. Результат можно сократить на 5 – получается 7/19.

В случае, если необходимо разделить дробь на простое число, методика немного отличается. Изначально стоит записать это число как неправильную дробь, а потом делить по той же схеме. Например, 2/13:5 нужно записать как 2/13: 5/1. Теперь нужно перевернуть 5/1 и умножить получившиеся дроби: 2/13х1/5= 2/65.

Иногда приходится совершать деление дробей смешанных. С ними нужно поступать, как и с целыми числами: превратить в неправильные дроби, перевернуть делитель и умножить все. Например, 8 ½ : 3. Превращаем все в неправильные дроби: 17/2: 3/1. Далее следует переворот 3/1 и умножение: 17/2х1/3= 17/6. Теперь следует перевести неправильную дробь в правильную – 2 целых и 5/6.

Итак, разобравшись с тем, что такое дроби и как можно с ними совершать различные арифметические действия, нужно постараться не забывать об этом. Ведь люди всегда более склонны делить что-то на части, нежели прибавлять, поэтому нужно уметь делать это правильно.

www.syl.ru

Как решать дроби. Решение дробей.

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей!

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид : ±X/Y, где Y - знаменатель, он сообщает на сколько частей разделили целое, а X - числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя - дробь является правильной, если наоборот - неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс, вам надо понять, что решение дробей, в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого - три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры.

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

Ответ: 15/20

Сложение и вычитание дробей

Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.

Например, необходимо найти сумму дробей 1/2 и 1/3

Ответ: 5/6

Теперь найдем разность дробей 1/2 и 1/4

Ответ: 1/4

Умножение и деление дробей

Тут решение дробей несложное, здесь все достаточно просто:

  • Умножение - числители и знаменатели дробей перемножаются между собой;
  • Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.

Например:

На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.

Для закрепления материала рекомендуем также посмотреть наше видео:

Также рекомендуем к использованию наш онлайн калькулятор дробей! В нем вы можете посмотреть, как строить решение, на собственных примерах.

Если вы учитель , то возможно скачать презентацию для начальной школы (http://school-box.ru/nachalnaya-shkola/prezentazii-po-matematike.html) будет вам кстати.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

история дробей. История возникновения обыкновенных дробей

Одним из самых сложных разделов математики по сей день считаются дроби. История дробей насчитывает не одно тысячелетие. Умение делить целое на части возникло на территории древнего Египта и Вавилона. С годами усложнялись операции, проделываемые с дробями, менялась форма их записи. У каждого государства древнего мира были свои особенности во «взаимоотношениях» с этим разделом математики.

Что такое дробь?

Когда возникла необходимость делить целое на части без лишних усилий, тогда и появились дроби. История дробей неразрывна связана с решением утилитарных задач. Сам термин «дробь» имеет арабские корни и происходит от слова, обозначающего «ломать, разделять». С древних времен в этом смысле мало что изменилось. Современное определение звучит следующим образом: дробь — это часть или сумма частей единицы. Соответственно, примеры с дробями представляют собой последовательное выполнение математических операций с долями чисел.

Сегодня различают два способа их записи. Обыкновенные и десятичные дроби возникли в разное время: первые являются более древними.

Пришли из глубины веков

Впервые оперировать дробями начали на территории Египта и Вавилона. Подход математиков двух государств имел значительные отличия. Однако начало и там и там было положено одинаково. Первой дробью стала половина или 1/2. Дальше возникла четверть, треть и так далее. Согласно данным археологических раскопок, история возникновения дробей насчитывает около 5 тысяч лет. Впервые доли числа встречаются в египетских папирусах и на вавилонских глиняных табличках.

Древний Египет

Виды обыкновенных дробей сегодня включают в себя и так называемые египетские. Они представляют собой сумму нескольких слагаемых вида 1/n. Числитель — всегда единица, а знаменатель — натуральное число. Появились такие дроби, как ни трудно догадаться, в древнем Египте. При расчетах все доли старались записывать в виде таких сумм (например, 1/2 + 1/4 + 1/8). Отдельными обозначениями обладали только дроби 2/3 и 3/4, остальные разбивались на слагаемые. Существовали специальные таблицы, в которых доли числа представлялись в виде суммы.

Наиболее древнее из известных упоминаний такой системы встречается в Математическом папирусе Ринда, датируемом началом второго тысячелетия до нашей эры. Он включает таблицу дробей и математические задачи с решениями и ответами, представленными в виде сумм дробей. Египтяне умели складывать, делить и умножать доли числа. Дроби в долине Нила записывались с помощью иероглифов.

Представление доли числа в виде суммы слагаемых вида 1/n, характерное для древнего Египта, использовалось математиками не только этой страны. Вплоть до Средних веков египетские дроби применялись на территории Греции и других государств.

Развитие математики в Вавилоне

Иначе выглядела математика в Вавилонском царстве. История возникновения дробей здесь напрямую связана с особенностями системы счисления, доставшейся древнему государству в наследство от предшественника, шумеро-аккадской цивилизации. Расчетная техника в Вавилоне была удобнее и совершеннее, чем в Египте. Математика в этой стране решала гораздо больший круг задач.

Судить о достижениях вавилонян сегодня можно по сохранившимся глиняным табличкам, заполненным клинописью. Благодаря особенностям материала они дошли до нас в большом количестве. По мнению некоторых ученых, математики в Вавилоне раньше Пифагора открыли известную теорему, что, несомненно, свидетельствует о развитии науки в этом древнем государстве.

Дроби: история дробей в Вавилоне

Система счисления в Вавилоне была шестидесятеричной. Каждый новый разряд отличался от предыдущего на 60. Такая система сохранилась в современном мире для обозначения времени и величин углов. Дроби также были шестидесятеричными. Для записи использовали специальные значки. Как и в Египте, примеры с дробями содержали отдельные символы для обозначения 1/2, 1/3 и 2/3.

Вавилонская система не исчезла вместе с государством. Дробями, написанными в 60-тиричной системе, пользовались античные и арабские астрономы и математики.

Древняя Греция

История обыкновенных дробей мало чем обогатилась в древней Греции. Жители Эллады считали, что математика должна оперировать лишь целыми числами. Поэтому выражения с дробями на страницах древнегреческих трактатов практически не встречались. Однако определенный вклад в этот раздел математики внесли пифагорейцы. Они понимали дроби как отношения или пропорции, а единицу считали также неделимой. Пифагор с учениками построил общую теорию дробей, научился проводить все четыре арифметические операции, а также сравнение дробей путем приведения их к общему знаменателю.

Священная римская империя

Римская система дробей была связана с мерой веса, называемой «асс». Она делилась на 12 долей. 1/12 асса называлась унцией. Для обозначения дробей существовало 18 названий. Приведем некоторые из них:

  • семис — половина асса;

  • секстанте — шестая доля асса;

  • семиунция — пол-унции или 1/24 асса.

Неудобство такой системы заключалось в невозможности представить число в виде дроби со знаменателем 10 или 100. Римские математики преодолели трудность с помощью использования процентов.

Написание обыкновенных дробей

В Античности дроби уже писали знакомым нам образом: одно число над другим. Однако было одно существенное отличие. Числитель располагался под знаменателем. Впервые так писать дроби начали в древней Индии. Современный нам способ стали использовать арабы. Но никто из названных народов не применял горизонтальную черту для разделения числителя и знаменателя. Впервые она появляется в трудах Леонардо Пизанского, более известного как Фибоначчи, в 1202 году.

Китай

Если история возникновения обыкновенных дробей началась в Египте, то десятичные впервые появились в Китае. В Поднебесной империи их стали использовать примерно с III века до нашей эры. История десятичных дробей началась с китайского математика Лю Хуэя, предложившего использовать их при извлечении квадратных корней.

В III веке нашей эры десятичные дроби в Китае стали применяться при расчете веса и объема. Постепенно они все глубже начали проникать в математику. В Европе, однако, десятичные дроби стали использоваться гораздо позже.

Аль-Каши из Самарканда

Независимо от китайских предшественников десятичные дроби открыл астроном аль-Каши из древнего города Самарканда. Жил и трудился он в XV веке. Свою теорию ученый изложил в трактате «Ключ к арифметике», увидевшем свет в 1427 году. Аль-Каши предложил использовать новую форму записи дробей. И целая, и дробная часть теперь писались в одной строке. Для их разделения самаркандский астроном не использовал запятую. Он писал целое число и дробную часть разными цветами, используя черные и красные чернила. Иногда для разделения аль-Каши также применял вертикальную черту.

Десятичные дроби в Европе

Новый вид дробей начал появляться в трудах европейских математиков с XIII века. Нужно заметить, что с трудами аль-Каши, как и с изобретением китайцев они знакомы не были. Десятичные дроби появились в трудах Иордана Неморария. Затем их использовал уже в XVI веке Франсуа Виет. Французский ученый написал «Математический канон», в котором содержались тригонометрические таблицы. В них Виет использовал десятичные дроби. Для разделения целой и дробной части ученый применял вертикальную черту, а также разный размер шрифта.

Однако это были лишь частные случаи научного использования. Для решения повседневных задач десятичные дроби в Европе стали применяться несколько позже. Произошло это благодаря голландскому ученому Симону Стевину в конце XVI века. Он издал математический труд «Десятая» в 1585 году. В нем ученый изложил теорию использования десятичных дробей в арифметике, в денежной системе и для определения мер и весов.

Точка, точка, запятая

Стевин также не пользовался запятой. Он отделял две части дроби при помощи нуля, обведенного в круг. Впервые запятая разделила две части десятичной дроби только в 1592 году. В Англии, однако, вместо нее стали применять точку. На территории США до сих пор десятичные дроби пишут именно таким образом.

Одним из инициаторов использования обоих знаков препинания для разделения целой и дробной части был шотландский математик Джон Непер. Он высказал свое предложение в 1616-1617 гг. Запятой пользовался и немецкий ученый Иоганн Кеплер.

Дроби на Руси

На русской земле первым математиком, изложившим деление целого на части, стал новгородский монах Кирик. В 1136 году он написал труд, в котором изложил метод «счисления лет». Кирик занимался вопросами хронологии и календаря. В своем труде он привел в том числе и деление часа на части: пятые, двадцать пятые и так далее доли.

Деление целого на части применялось при расчете размера налога в XV-XVII веках. Использовались операции сложения, вычитания, деления и умножения с дробными частями.

Само слово «дробь» появилось на Руси в VIII веке. Оно произошло от глагола «дробить, разделять на части». Для названия дробей наши предки использовали специальные слова. Например, 1/2 обозначалась как половина или полтина, 1/4 — четь, 1/8 — полчеть, 1/16 — полполчеть и так далее.

Полная теория дробей, мало чем отличающаяся от современной, была изложена в первом учебнике по арифметике, написанном в 1701 году Леонтием Филипповичем Магницким. «Арифметика» состояла из нескольких частей. О дробях подробно автор рассказывает в разделе «О числах ломаных или с долями». Магницкий приводит операции с «ломанными» числами, разные их обозначения.

Сегодня по-прежнему в числе самых сложных разделов математики называются дроби. История дробей также не была простой. Разные народы иногда независимо друг от друга, а иногда заимствуя опыт предшественников, пришли к необходимости введения, освоения и применения долей числа. Всегда учение о дробях вырастало из практических наблюдений и благодаря насущным проблемам. Необходимо было делить хлеб, размечать равные участки земли, высчитывать налоги, измерять время и так далее. Особенности применения дробей и математических операций с ними зависели от системы счисления в государстве и от общего уровня развития математики. Так или иначе, преодолев не одну тысячу лет, раздел алгебры, посвященный долям чисел, сформировался, развился и с успехом используется сегодня для самых разных нужд как практического характера, так и теоретического.

fb.ru

Дроби - это важно!

    Здравствуйте, Дорогие друзья! Эх, дроби, дроби, дроби… Кому-то из ребят эти самые дроби понятны и они с ними «работают» быстро и, как говорится, без затруднений. А у кого-то при этом слове возникает чувство горечи и невольно произносится: «Опять эти дроби :(».

А ведь эти самые дроби проходят сквозной нитью практически через все разделы математики –  уравнения и неравенства, задачи по геометрии, задачи на движение и работу, преобразование выражений, можно перечислять и перечислять.

Навык работы с дробями и понимание сути этой «дробной жизнедеятельности», я бы сказал – КРИТИЧЕСКИ необходимы! Не разберёшься с дробями – кранты!!! Экзамен если повезёт сдашь на 20 баллов. А если вдруг получите наследство от дяди из-за границы, например 13/63 от всего его состояния, тоже не сможете вычислить сколько вам причитается )))

Не секрет, что для некоторых учащиеся в старших классах дробь вообще некое непонятное полузабытое «создание». И для педагогов уже давно не удивителен факт, что в 9-11 классах ребята при сложении дробей складывают  числитель с числителем, а знаменатель со знаменателем.

При умножении теряются – что же делать-то? А при делении дроби на дробь вообще не понимают как быть – вроде бы что-то куда-то переворачивать нужно. И это при том, что всё ранее вроде бы было понятно и решали правильно. А в чём же дело тогда? Ответ прост – именно в понимании и систематичности практических занятий, закреплении навыков.

Надеюсь, что после изучения статей у вас с дробями всё заладится, по крайней мере, в этой теме больше не возникнет вопросов. Останется только лишь периодически практиковаться.

Содержание всей группы статей про дроби:

1. Вступление (уже было, смотрите выше).2. Числитель и знаменатель. Виды дробей.3. Что выражают дробью.4. Основное свойство дроби.5. Перевод дробей из одного вида в другой.6. Сокращение дробей.7. Действия с дробями.8. Сравнение дробей.

*Кому будет полезна статья? ВСЕМ!!! С 5 по 11 класс, в том числе и родителям желающим помочь своим деткам в самом начале изучения темы. Учителям, надеюсь, тоже пригодится.

Рекомендация! Изучайте материал последовательно по пунктам.

С уважением, Александр Крутицких.

Делитесь информацией в социальных сетях.

matematikalegko.ru

Основное свойство дроби. Правила. Основное свойство алгебраической дроби

Говоря о математике, нельзя не вспомнить дроби. Их изучению уделяют немало внимания и времени. Вспомните, сколько примеров вам приходилось решать, чтобы усвоить те или иные правила работы с дробями, как вы запоминали и применяли основное свойство дроби. Сколько нервов было потрачено для нахождения общего знаменателя, особенно если в примерах было больше двух слагаемых!

Давайте же вспомним, что это такое, и немного освежим в памяти основные сведения и правила работы с дробями.

Определение дробей

Начнем, пожалуй, с самого главного – определения. Дробь – это число, которое состоит из одной или более частей единицы. Дробное число записывается в виде двух чисел, разделенных горизонтальной либо же косой чертой. При этом верхнее (или первое) называется числителем, а нижнее (второе) - знаменателем.

Стоит отметить, что знаменатель показывает, на сколько частей разделена единица, а числитель - количество взятых долей или частей. Зачастую дроби, если они правильные, меньше единицы.

Теперь давайте рассмотрим свойства данных чисел и основные правила, которые используются при работе с ними. Но прежде чем мы будем разбирать такое понятие, как "основное свойство рациональной дроби", поговорим о видах дробей и их особенностях.

Какими бывают дроби

Можно выделить несколько видов таких чисел. В первую очередь это обыкновенные и десятичные. Первые представляют собой уже указанный нами вид записи рационального числа с помощью горизонтальной либо косой черты. Второй вид дробей обозначается с помощью так называемой позиционной записи, когда сначала идет указание целой части числа, а затем, после запятой, указывается дробная часть.

Тут стоит отметить, что в математике одинаково используются как десятичные, так и обыкновенные дроби. Основное свойство дроби при этом действительно только для второго варианта. Кроме того, в обыкновенных дробях выделяют правильные и неправильные числа. У первых числитель всегда меньше знаменателя. Отметим также, что такая дробь меньше единицы. В неправильной дроби наоборот - числитель больше знаменателя, а сама она больше единицы. При этом из нее можно выделить целое число. В данной статье мы рассмотрим только обыкновенные дроби.

Свойства дробей

Любое явление, химическое, физическое или математическое, имеет свои характеристики и свойства. Не стали исключением и дробные числа. Они имеют одну немаловажную особенность, с помощью которой над ними можно проводить те или иные операции. Каково основное свойство дроби? Правило гласит, что если ее числитель и знаменатель умножить либо же разделить на одно и то же рациональное число, мы получим новую дробь, величина которой будет равна величине исходной. То есть, умножив две части дробного числа 3/6 на 2, мы получим новую дробь 6/12, при этом они будут равны.

Исходя из этого свойства, можно сокращать дроби, а также подбирать общие знаменатели для той или иной пары чисел.

Операции

Несмотря на то что дроби кажутся нам более сложными, по сравнению с простыми числами, с ними также можно выполнять основные математические операции, такие как сложение и вычитание, умножение и деление. Кроме того, есть и такое специфическое действие, как сокращение дробей. Естественно, каждое из этих действий совершается согласно определенным правилам. Знание этих законов облегчает работу с дробями, делает ее более легкой и интересной. Именно поэтому дальше мы с вами рассмотрим основные правила и алгоритм действий при работе с такими числами.

Но прежде чем говорить о таких математических операциях, как сложение и вычитание, разберем такую операцию, как приведение к общему знаменателю. Вот тут нам как раз таки и пригодится знание того, какое основное свойство дроби существует.

Общий знаменатель

Для того чтобы число привести к общему знаменателю, сначала понадобится найти наименьшее общее кратное для двух знаменателей. То есть наименьшее число, которое одновременно делится на оба знаменателя без остатка. Наиболее простой способ подобрать НОК (наименьшее общее кратное) - выписать в строчку числа, кратные для одного знаменателя, затем для второго и найти среди них совпадающее число. В том случае, если НОК не найдено, то есть у данных чисел нет общего кратного числа, следует перемножить их, а полученное значение считать за НОК.

Итак, мы нашли НОК, теперь следует найти дополнительный множитель. Для этого нужно поочередно разделить НОК на знаменатели дробей и записать над каждой из них полученное число. Далее следует умножить числитель и знаменатель на полученный дополнительный множитель и записать результаты в виде новой дроби. Если вы сомневаетесь в том, что полученное вами число равняется прежнему, вспомните основное свойство дроби.

Сложение

Теперь перейдем непосредственно к математическим операциям над дробными числами. Начнем с самой простой. Есть несколько вариантов сложения дробей. В первом случае оба числа имеют одинаковый знаменатель. В таком случае остается лишь сложить числители между собой. Но знаменатель не меняется. Например, 1/5 + 3/5 = 4/5.

В случае если у дробей разные знаменатели, следует привести их к общему и лишь затем выполнять сложение. Как это сделать, мы с вами разобрали чуть выше. В данной ситуации вам как раз и пригодится основное свойство дроби. Правило позволит привести числа к общему знаменателю. При этом значение никоим образом не изменится.

Как вариант, может случиться, что дробь является смешанной. Тогда следует сначала сложить между собой целые части, а затем уже дробные.

Умножение

Умножение дробей не требует никаких хитростей, и для того чтобы выполнить данное действие, необязательно знать основное свойство дроби. Достаточно сначала перемножить между собой числители и знаменатели. При этом произведение числителей станет новым числителем, а знаменателей – новым знаменателем. Как видите, ничего сложного.

Единственное, что от вас требуется, - знание таблицы умножения, а также внимательность. Кроме того, после получения результата следует обязательно проверить, можно ли сократить данное число или нет. О том, как сокращать дроби, мы расскажем немного позже.

Вычитание

Выполняя вычитание дробей, следует руководствоваться теми же правилами, что и при сложении. Так, в числах с одинаковым знаменателем достаточно от числителя уменьшаемого отнять числитель вычитаемого. В том случае, если у дробей разные знаменатели, следует привести их к общему и затем выполнить данную операцию. Как и в аналогичном случае со сложением, вам понадобится использовать основное свойство алгебраической дроби, а также навыки в нахождении НОК и общих делителей для дробей.

Деление

И последняя, наиболее интересная операция при работе с такими числами - деление. Она довольно простая и не вызывает особых трудностей даже у тех, кто плохо разбирается, как работать с дробями, в особенности выполнять операции сложения и вычитания. При делении действует такое правило, как умножение на обратную дробь. Основное свойство дроби, как и в случае с умножением, задействовано для данной операции не будет. Разберем подробнее.

При делении чисел делимое остается без изменений. Дробь-делитель превращается в обратную, то есть числитель со знаменателем меняются местами. После этого числа перемножаются между собой.

Сокращение

Итак, мы с вами уже разобрали определение и структуру дробей, их виды, правила операций над данными числами, выяснили основное свойство алгебраической дроби. Теперь поговорим о такой операции, как сокращение. Сокращением дроби называется процесс ее преобразования - деление числителя и знаменателя на одно и то же число. Таким образом, дробь сокращается, не меняя при этом своих свойств.

Обычно при совершении математической операции следует внимательно посмотреть на полученный в итоге результат и выяснить, возможно ли сократить полученную дробь или же нет. Помните, что в итоговый результат всегда записывается не требующее сокращения дробное число.

Другие операции

Напоследок отметим, что мы перечислили далеко не все операции над дробными числами, упомянув лишь самые известные и необходимые. Дроби также можно сравнять, преобразовать в десятичные и наоборот. Но в данной статье мы не стали рассматривать данные операции, так как в математике они осуществляются намного реже, чем те, что были приведены нами выше.

Выводы

Мы с вами поговорили о дробных числах и операциях с ними. Разобрали также основное свойство дроби, сокращение дробей. Но заметим, что все эти вопросы были рассмотрены нами вскользь. Мы привели лишь наиболее известные и употребляемые правила, дали наиболее важные, на наш взгляд, советы.

Данная статья призвана скорее освежить забытые вами сведения о дробях, нежели дать новую информацию и "забить" голову бесконечными правилами и формулами, которые, вероятнее всего, вам так и не пригодятся.

Надеемся, что материал, представленный в статье просто и лаконично, стал для вас полезным.

fb.ru

Действия с дробями, подробно с примерами

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь список материалов и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь  – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:

Примеры (1):

Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):

Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.

*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:

 

Вывод: имеется универсальный подход  – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели.  А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:

В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ.

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразования.

Посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ.

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видим, что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но  пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры: 

50 и 60   =>  50 = 2∙5∙5    60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

 =>   НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72   =>   48 = 2∙2∙2∙2∙3    72 = 2∙2∙2∙3∙3            

в разложении большего числа не хватает двойки и тройки

=>   НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17    119 = 7∙17

в разложении большего числа не хватает тройки

 =>   НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:

*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Если есть возможность сократить дробь на стадии вычисления, то лучше это сделать:

Ещё правило относящееся к умножению!

Примеры, которые мы уже рассмотрели:

Определить, сколько составляет 3/7 от числа 63?

Задача. Весь путь составляет 180 километров. Турист в первый день прошёл 3/10 пути. Сколько километров турист прошёл в первый день?

Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм  картофеля завезли на базу?

С произведением закончим.

*Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

3. Деление дробей.

Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

Примеры:

На этом всё! Успеха вам!

С уважением, Александр Крутицких.

Делитесь информацией в социальных сетях.

matematikalegko.ru