Обратная функция. Функция, заданная неявно и параметрически. Задайте функцию обратную данной постройте ее график


Обратная функция. Урок алгебры в 10-м классе (профильный уровень)

Разделы: Математика

Цели урока:

Образовательная:

  • формировать знания по новой теме в соответствии с программным материалом;
  • изучить свойство обратимости функции и научить находить функцию, обратную данной;

Развивающая:

  • развивать навыки самоконтроля, предметную речь;
  • овладеть понятием обратная функция и усвоить методы нахождения обратной функции;

Воспитательная:  формировать коммуникативную компетентность.

Оборудование: компьютер, проектор, экран, интерактивная доска SMART Board, раздаточный материал (самостоятельная работа) для работы в группе.

Ход урока.

1. Организационный момент.

Цель – подготовка учащихся к работе на уроке:

-определение отсутствующих,

- настрой учащихся на работу, организация внимания;

- сообщение темы и цели урока.

2. Актуализация опорных знаний учащихся. Фронтальный опрос.

Цель - установить правильность и осознанность изученного теоретического материала, повторение пройденного материала.<Приложение 1>

Для учащихся на интерактивной доске демонстрируется график функции. Учителем формулируется задание – рассмотреть график функции и перечислить изученные свойства функции. Учащиеся перечисляют свойства функции в соответствии со схемой исследования. Учитель справа от графика функции маркером на интерактивной доске записывает названные свойства.

Свойства функции:

  1. D(f) = [-4;),E(y) = [0;), 
  2. ни четная, ни нечетная, непериодическая, непрерывная, ограничена снизу;
  3. y=0, при х=0
  4. y>0 при на [-4;0) и на [0;)
  5. возрастает на [-2;-1] и на [0;) убывает на [-4;-2] и на [-1;0]
  6. yнаиб- не существует yнаим=0 при х=0
  7. xmax= -1 ,ymax = 2 xmin = -2, ymin = 1 xmin = 0, ymin = 0
  8. Выпукла вниз на [4;-1], выпукла вверх на [1;), невыпуклая на [-1;1].

По окончании исследования учитель сообщает, что сегодня на уроке они познакомятся еще с одним свойством функции – обратимостью. Для осмысленного изучения нового материала учитель предлагает ребятам познакомиться с основными вопросами, на которые учащиеся должны дать ответ по окончании урока. Вопросы записаны на обыкновенной доске и в виде раздаточного материала есть у каждого ученика (раздается до урока)

Вопросы:

  1. Какая функция называется обратимой?
  2. Любая ли функция обратима?
  3. Какая функция называется обратной данной?
  4. Как связаны область определения и множество значений функции и обратной ей функции?
  5. Если функция задана аналитически, как задать формулой обратную функцию?
  6. Если функция задана графически, как построить график обратной ей функции?

3. Объяснение нового материала.

Цель - формировать знания по новой теме в соответствии с программным материалом; изучить свойство обратимости функции и научить находить функцию, обратную данной; развивать предметную речь.

Учитель проводит изложение материала в соответствии с материалом параграфа. На интерактивной доске учитель проводит сравнение графиков двух функций, у которых области определения и множества значений одинаковы, но одна из функций монотонна, а другая нет, тем самым подводит учащихся под понятия обратимой функции.

Затем учитель формулирует определение обратимой функции и проводит доказательство теоремы об обратимой функции, используя график монотонной функции на интерактивной доске.

Определение 1: Функцию y=f(x), x X называют обратимой, если любое свое значение она принимает только в одной точке множества X.

Теорема: Если функция y=f(x) монотонна на множестве X , то она обратима.

Доказательство:

  1. Пусть функция y=f(x) возрастает на Х и пусть х1≠х2- две точки множества Х.
  2. Для определенности пусть х1< х2. Тогда из того, что х1 < х2 следует, что f(х1) < f(х2).
  3. Таким образом, разным значениям аргумента соответствуют разные значения функции, т.е. функция обратима.

(По ходу доказательства теоремы учитель маркером делает все необходимые пояснения на чертеже)

Перед тем как сформулировать определение обратной функции учитель просит учащихся определить, какая из предложенных функций обратима? На интерактивной доске показаны графики функций и записаны несколько аналитически заданных функций:

 А)

 Б)

Г) y = 2x + 5 

Д) y = -x2 + 7

Учитель вводит определение обратной функции.

Определение 2: Пусть обратимая функция y=f(x) определена на множестве Х и Е(f)=Y. Поставим в соответствие каждому y из Y то единственное значение х, при котором f(x)=y. Тогда получим функцию, которая определена на Y, а Х – область значений функции

Эту функцию обозначают x=f -1(y) и называют обратной по отношению к функции y=f(x).

Учащимся предлагается сделать вывод о связи между областью определения и множеством значений обратных функций.

Для рассмотрения вопроса о способах нахождения функции обратной данной, учитель привлек двух учащихся. Ребята накануне получили задание у учителя самостоятельно разобрать аналитический и графический способы нахождения функции обратной данной. Учитель выступил в роли консультанта при подготовке учащихся к уроку.

Сообщение первого ученика.

Замечание: монотонность функции, является достаточным условием существования обратной функции. Но оно не является необходимым условием.

Учащийся привел примеры различных ситуаций, когда функция не монотонна, но обратима, когда функция не монотонна и не обратима, когда монотонна и обратима

Затем ученик знакомит учащихся со способом нахождения обратной функции, заданной аналитически.

Алгоритм нахождения

  1. Убедиться, что функция монотонна.
  2. Выразить переменную х через у.
  3. Переобозначить переменные. Вместо х=f -1(y) пишут y=f -1(x)

Затем решает два примера на нахождение функции обратной данной.

Пример 1: Показать, что для функции y=5x-3 существует обратная функция, и найти ее аналитическое выражение.

Решение. Линейная функция y=5x-3 определена на R, возрастает на R и область ее значений есть R. Значит, обратная функция существует на R. Чтобы найти ее аналитическое выражение, решим уравнение y=5x-3 относительно х; получим Это и есть искомая обратная функция. Она определена и возрастает на R.

Пример 2: Показать, что для функции y=x2, х≤0 существует обратная функция, и найти ее аналитическое выражение.

Функция непрерывна, монотонна в своей области определения, следовательно, она обратима. Проанализировав области определения и множества значений функции, делается соответствующий вывод об аналитическом выражении для обратной функции.

Ответ:

Второй ученик выступает с сообщением о графическом способе нахождения обратной функции. В ходе своего объяснения ученик использует возможности интерактивной доски .

Чтобы получить график функции y=f -1(x), обратной по отношению к функции y=f(x), надо график функции y=f(x)преобразовать симметрично относительно прямой y=x.

Во время объяснения на интерактивной доске выполняется следующее задание:

Построить в одной системе координат график функции и график обратной ей функции. Запишите аналитическое выражение обратной функции.

4. Первичное закрепление нового материала.

Цель – установить правильность и осознанность понимания изученного материала, выявить пробелы первичного осмысления материала, провести их коррекцию.

Учащиеся делятся на пары. Им раздаются листы с заданиями, в которых они и выполняют работу в парах. Время на выполнение работы ограничено (5-7 мин). Одна пара учащихся работает на компьютере, проектор на это время выключается и остальным ребятам не видно, как работают учащиеся на компьютере.

По окончании времени (предполагается, что с работой справилось большинство учащихся) на интерактивной доске (вновь включается проектор) показывается работа учащихся, где и выясняется в ходе проверки правильность выполнения задания в паре. При необходимости учителем проводится коррекционная, разъясняющая работа.

Самостоятельная работа в парах <Приложение 2 >

5. Итог урока. По вопросам, которые были заданы перед началом лекции. Объявление оценок за урок.

Домашнее задание §10. №№ 10.6(а,в) 10.8-10.9(б) 10.12 (б)

Алгебра и начала анализа. 10 класс В 2-х частях для общеобразовательных учреждений (профильный уровень) /А.Г.Мордкович, Л.О.Денищева, Т.А.Корешкова и др.; под ред. А.Г.Мордковича, М: Мнемозина, 2007 год

xn--i1abbnckbmcl9fb.xn--p1ai

Понятие об обратной функции: график функции и теорема

 

Мы уже сталкивались с задачей, когда по заданной функции f и заданному значению её аргумента необходимо было вычислить значение функции в этой точке. Но иногда приходится сталкиваться с обратной задачей: найти по известной функции f и её некоторому значению y значение аргумента, в котором функция принимает данное значение y.

Функция, которая, принимает каждое свое значение в единственной точке своей области определения, называется обратимой функцией. Например, линейная функция будет являться обратимой функцией. А квадратичная функция или функция синус не будет являться обратимыми функциями. Так как одно и то же значение функция может принимать при различных аргументах.

Обратная функция

Положим, что f есть некоторая произвольная обратимая функция. Каждому числу из области её значений y0, соответствует лишь одно число из области определения x0, такое что f(x0) = y0.

Если теперь мы каждому значению х0 поставим в соответствие значение y0, то получим уже новую функцию. Например, для линейной функции f(x) = k * x + b функция g(x) = (x - b)/k будет являться обратной.

Если некоторая функция g в каждой точке х области значений обратимой функции f принимает значение у такое, что f(y) = x, то говорят, что функция g – есть обратная функция к f.

Если у нас будет задан график некоторой обратимой функции f, то для того чтобы построить график обратной функции, можно пользоваться следующим утверждением: график функции f и обратной к ней функции g будут симметричны относительно прямой, заданной уравнением y = x.

Если функция g является обратной к функции f, то функция g будет являться обратимой функцией. А функция f будет обратной к функции g. Обычно говорят, что две функции f и g взаимно обратные друг к другу.

На следующем рисунке представлены графики функций f и g взаимно обратных друг к другу.

Выведем следующую теорему: если функция f возрастает (или убывает) на некотором промежутке A, то она обратима. Обратная к а функция g, определенная в области значений функции f, также является возрастающей (или соответственно убывающей) функцией. Данная теорема называется теоремой об обратной функции.

Нужна помощь в учебе?

Предыдущая тема: Логарифмическая функция: основные свойства и графики Следующая тема:&nbsp&nbsp&nbspПроизводная и первообразная показательной функции: число е и примеры

Все неприличные комментарии будут удаляться.

www.nado5.ru

Обратная функция. Функция, заданная неявно и параметрически

 

Функция , где , называется обратимой на множестве , если каждому значению у из множества значений функции соответствует единственное значение .

Если – обратимая функция, то на множестве У определена функция g, которая каждому значению ставит в соответствие такое, что , т.е. определена . Поэтому .

Функция g называется обратной функцией к f.

Функции f и g называются взаимно обратными функциями. Графики взаимно-обратных функций f и g симметричны относительно прямой

Если функции f и g взаимно обратны, то и

Для нахождения обратной функции из равенства выражают х через у (если это возможно), а затем переобозначают переменные (через независимую переменную, через зависимую).

Пусть является функцией переменной , а переменная , в свою очередь, является функцией от переменной , т.е. и . Тогда функция называется сложной функцией (или функцией от функции), если область определения функции содержит множество значений функции . Переменная в этом случае называется промежуточной переменной.

Всякую линию на координатной плоскости, которая не имеет разрывов, называют кривой линией.

График функции , который не имеет разрывов, является кривой линией. Однако не всякая кривая линия является графиком функции (график функции задается при условии, что каждому значению соответствует единственное значение ).

Говорят, что функция , , задана неявно уравнением

, (2)

где некоторое выражение от переменных , при условии

.

Функцию, заданную явно уравнением , можно привести к виду (2):

 

, (3)

(в равенстве (3) ). Однако, не всякую функцию, заданную неявно, можно задать в виде . Уравнение (2), не всегда однозначно разрешимо относительно переменной у или вообще не разрешимо. Оно задает часто кривую линию, но не график функции.

Для нахождения точки, лежащей на линии, которая задается уравнением (2), необходимо придать переменной некоторое числовое значение, а затем из уравнения (2) найти соответствующее значение (возможно, несколько значений ). Для построения соответствующей кривой придают переменной некоторое количество числовых значений, получим множество точек, принадлежащих искомой линии (2). Эти точки следует соединить непрерывной линией.

Уравнения вида

(4)

называют параметрическими уравнениями линии, где t – параметр или вспомогательная переменная, а и – функции параметра .

Каждому значению параметра t из заданного промежутка соответствует определенные значения х и у (вычисляемые по формулам (4)), которые и определяют положение точки в системе координат .

Для построения линии, заданной параметрическими уравнениями, выбирают достаточное количество значений параметра где , вычисляют соответствующие значения . Затем строятся точки которые потом соединяются непрерывной линией.

Чтобы от уравнений (4) перейти к уравнению типа необходимо исключить параметр из уравнений системы (4).

 

Пример 1.Найти функцию, обратную данной (если она существует) и построить графики данной функции и ей обратной в одной системе координат.

1) ; 2) .

Решение. 1. Функция монотонна, поэтому для нее существует обратная функция. Выразим через :

, , ,

т.е. .

Обозначим независимую переменную через , а зависимую – через :

.

Обратная к заданной функции есть функция и она имеет вид:

, где ,

а .

Строим графики функции и (рис.1)

 

 

Рис. 1

2. Так как функция не является монотонной на промежутке , то обратной функции для нее не существует.

Пример 2. Из уравнения окружности выразить явной через .

Решение. Из уравнения выразим , откуда получаем совокупность двух функций

Графиком первого уравнения совокупности является полуокружность в верхней полуплоскости системы при условии, что .

Графиком второго уравнения совокупности является полуокружности в нижней полуплоскости системы при условии, что .

Пример 3. Построить кривую, заданную параметрически уравнениями

.

Решение. Для построения кривой выберем достаточное количество значений параметра и вычислим соответствующие значения . Данные занесем в таблицу:

 

Построим точки в системе координат и соединим их плавной линией (рис.2).

 

 

Рис.2

 

Задания

 

I уровень

1.1. Найдите функцию, обратную данной, если она существует.

1) ; 2) ; 3) .

1.2. Докажите, что пары функций являются взаимно обратными.

1) и , если ;

2) и ;

3) и ;

4) и , если .

1.3. Постройте график функции и ей обратной (если она существует) в одной системе координат.

1) , если ; 2) ;

3) ; 4) , если .

1.4. Найдите точку, принадлежащую кривой для заданного значения .

1) , ;

2) , ;

3) , .

1.5. Запишите функцию в явном виде.

1) ; 2) .

1.6. Найдите соответствующие точки кривой, заданной параметрически уравнениями, если заданы значения параметра ; ; ; ; .

1) 2)

 

II уровень

2.1. Найдите функцию, обратную данной и постройте их графики в одной системе координат:

1) ; 2) ;

3) ; 4) ;

5)

2.2. Определите, обратима ли функция

2.3. Найдите точки пересечения графиков где и обратной ей функции.

2.4. Пусть графиком функции является полуокружность с центром О(0; 0) и радиусом равным 5, расположенная в нижней координатной полуплоскости. Определите, существует ли функция, обратная данной.

2.5. Пусть задана функция Найдите промежутки, на которых данная функция обратима.

2.6. Выразите явно через из уравнения и постройте данную линию:

1) ; 2) ;

3) .

2.7. Постройте линию, заданную параметрически уравнениями:

1) ; 2) ;

3) .

 

III уровень

3.1. Найдите функцию, обратную данной и постройте их графики в одной системе координат:

1) ; 2) ;

3) ; 4)

5) , ; 6)

3.2. Докажите, что обратна сама себе.

3.3. Найдите если обратна к функции

 

Похожие статьи:

poznayka.org